Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biotechnology

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


Metabolic Network Analysis Of Filamentous Cyanobacteria, Daniel Alexis Norena-Caro Jun 2020

Metabolic Network Analysis Of Filamentous Cyanobacteria, Daniel Alexis Norena-Caro

LSU Doctoral Dissertations

Cyanobacteria were the first organisms to use oxygenic photosynthesis, converting CO2 into useful organic chemicals. However, the chemical industry has historically relied on fossil raw materials to produce organic precursors, which has contributed to global warming. Thus, cyanobacteria have emerged as sustainable stakeholders for biotechnological production. The filamentous cyanobacterium Anabaena sp. UTEX 2576 can metabolize multiple sources of Nitrogen and was studied as a platform for biotechnological production of high-value chemicals (i.e., pigments, antioxidants, vitamins and secondary metabolites). From a Chemical engineering perspective, the biomass generation in this organism was thoroughly studied by interpreting the cell as a microbial …


Optimization And Validation Of The Neurolux Wireless Optoelectronics System For Optogenetics, Karis Courey, Su Hyun Lee Ph.D., Adam Smith Ph.D., Nicholas Cilz Ph.D., Sarah K. Williams Avram Ph.D., Adi Cymerblit-Sabba Ph.D., June Song, Nicholas Leipzig Ph.D., W. Scott Young M.D., Ph.D. Jan 2020

Optimization And Validation Of The Neurolux Wireless Optoelectronics System For Optogenetics, Karis Courey, Su Hyun Lee Ph.D., Adam Smith Ph.D., Nicholas Cilz Ph.D., Sarah K. Williams Avram Ph.D., Adi Cymerblit-Sabba Ph.D., June Song, Nicholas Leipzig Ph.D., W. Scott Young M.D., Ph.D.

Williams Honors College, Honors Research Projects

Utilizing light and genetic engineering, optogenetics permits the manipulation of events within cells via light using the light-sensitive properties of single-component microbial opsins. Microbial opsins are activated by a light source, such as lasers, light-emitting diodes, and incandescent sources that deliver light to the region of interest either directly or indirectly, such as through fiberoptics. In classical in vivo optogenetics, the wiring of optic fibers necessitates tethering of animals by the optic fiber to the light source. The novel NeuroLux wireless optoelectronic system for optogenetics circumvents issues pertaining to classical optogenetics by utilizing near-field power transfer via magnetic coil antennae …


Higher Tensile Forces Across Cellular Junctions And An Intact Nuclear Linc Complex Is Required For Epithelial Function And Stability, Fnu Vani Narayanan Jan 2020

Higher Tensile Forces Across Cellular Junctions And An Intact Nuclear Linc Complex Is Required For Epithelial Function And Stability, Fnu Vani Narayanan

Theses and Dissertations

Recent advances in three-dimensional (3D) cell culture systems have provided key insights into the understanding of biochemical and physiological states of native tissue. A significant progress in the field of mechanobiology involves measuring cellular traction forces in a more native 3D environment. However, the effects of mechanical forces exerted across cellular junctions and the nuclear LINC complex, in an organized 3D system has not been investigated thus far. Epithelial cells spontaneously form acini (also known as cysts or spheroids) with a single, fluid-filled central lumen, when grown in 3D matrices. The size of the lumen is dependent on apical secretion …