Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biology

Investigation Of The Function Of Protein Acyl Transferases Using Crispr-Cas9 To Create Null Mutants, Claire E. Christopher Jan 2023

Investigation Of The Function Of Protein Acyl Transferases Using Crispr-Cas9 To Create Null Mutants, Claire E. Christopher

Honors Theses and Capstones

24 Protein Acyl Transferases (PATs) have been identified in the model organism Arabidopsis thaliana. Despite knowing the enzymatic function of these genes (palmitoylation), the specific subcellular pathways, protein targets, and cellular activities of these proteins remain unknown. To investigate the pathways that PAT genes are involved in, deletion mutations were created in several genes and the phenotype of the organisms carrying homozygous mutations was observed. To introduce mutations, the CRISPR/Cas9 system was inserted into the plant’s genome using Agrobacterium tumefaciens to cause deletions in PAT genes of interest. To date, no CRISPR-induced pat mutants have a noticeable phenotype. These …


Genetic Characterization Of Centromere-Mediated Uniparental Genome Elimination In Arabidopsis, Diana Spencer Dec 2022

Genetic Characterization Of Centromere-Mediated Uniparental Genome Elimination In Arabidopsis, Diana Spencer

Electronic Theses and Dissertations

The production of haploids through crossing was first discovered from instances of interspecies crosses in Nicotiana spp. in 1924. Since then, haploid induction crosses has been used to improve plant breeding programs and commercially utilized in a number of crop industries. The generation of doubled haploid instantaneously creates a pure homozygous line, therefore eliminating the need for several generations of inbreeding. There are several pathways to induce haploids in plants: of these methods, centromere-mediated genome elimination pathway engenders the highest haploid induction rate (HIR) with up to 45% in Arabidopsis compared to 15% through phospholipase-mediated haploid induction in maize. Centromere-mediated …


Characterizing The Role Of Β-Amylase3 In Cold Stress Response And Recovery In Arabidopsis Thaliana, Isabelle G. Houston May 2020

Characterizing The Role Of Β-Amylase3 In Cold Stress Response And Recovery In Arabidopsis Thaliana, Isabelle G. Houston

Senior Honors Projects, 2020-current

Starch is a polymer of glucose that is used as an energy store in plants. Mobilization of starch has implications in abiotic stress survival and recovery. While the importance of carbon and energy allocation in plant survival has been explored, the specific roles of starch degrading enzymes in plant responses to stress are still unclear. β-Amylase3, or BAM3, is the principle starch degrading enzyme at night and is transcriptionally upregulated in response to cold stress in the plant Arabidopsis thaliana. Using single and quadruple knockout mutant plants, I aimed to clarify the role of BAM3 in the response to …


Identification Of N-Acylethanolamine Hydrolyzing Enzyme In Solanum Lycopersicum, Derek A. Stuffle May 2016

Identification Of N-Acylethanolamine Hydrolyzing Enzyme In Solanum Lycopersicum, Derek A. Stuffle

Undergraduate Honors Theses

N-acylethanolamines (NAEs) are fatty acid derivatives that occur naturally in plant and animal systems. In mammals, they regulate physiological functions, including neurotransmission, immune responses, vasodilation, embryo development and implantation, feeding behavior, and cell proliferation. NAEs are metabolized by fatty acid amide hydrolase (FAAH), which belongs to the amidase signature family. It is hypothesized that putative FAAH functions as the catalyst in the metabolism of N-acylethanolamine in tomato plants. To test the hypothesis, FAAH protein homologs were identified in tomato via in silico analysis. Among the six homologs identified, FAAH1 and FAAH2 were selected for further validation. This study …


Insights Into Triterpene Metabolism In Model Monocotyledonous And Oilseed Plants Genetically Engineered With Genes From Botryococcus Braunii, Chase F. Kempinski Jan 2016

Insights Into Triterpene Metabolism In Model Monocotyledonous And Oilseed Plants Genetically Engineered With Genes From Botryococcus Braunii, Chase F. Kempinski

Theses and Dissertations--Plant and Soil Sciences

Isoprenoids are one of the most diverse classes of natural products and are all derived from universal five carbon, prenyl precursors. Squalene and botryococcene are linear, hydrocarbon triterpenes (thirty carbon compounds with six prenyl units) that have industrial and medicinal values. Squalene is produced by all eukaryotes as it is the first committed precursor to sterols, while botryococcene is uniquely produced by the green algae, Botryococcus braunii (race B). Natural sources for these compounds exist, but there is a desire for more renewable production platforms. The model plant Arabidopsis thaliana was engineered to accumulate botryococcene and squalene in its oil …


Descriptive Analyses Of Pollen Surface Morphologies In The Model Systems Brassica Rapa And Arabidopsis Thaliana And Three Arabidopsis Pollen Wall Mutants By Scanning Electron Microscopy, Andrew B. Kirkpatrick May 2015

Descriptive Analyses Of Pollen Surface Morphologies In The Model Systems Brassica Rapa And Arabidopsis Thaliana And Three Arabidopsis Pollen Wall Mutants By Scanning Electron Microscopy, Andrew B. Kirkpatrick

Theses and Dissertations

The mechanisms behind the construction of the pollen wall are equally elaborate and mysterious. Previous studies primarily used sectioned tissue to elucidate the events involved in proper pollen development. This study proposed and evaluated a protocol for exposing developing microspores to be examined by Scanning Electron Microscopy (SEM). Utilizing this protocol, comparative analyses of the superficial features present at the early, middle, and late tetrad as well as at released microspore stages of the model plants Brassica rapa and Arabidopsis thaliana were conducted. The utility of the technique was then evaluated through the examination of three Arabidopsis pollen wall mutants …


Characterization Of A Putative Activation Domain In The Hulk Gene Family, Christopher Doan Jul 2013

Characterization Of A Putative Activation Domain In The Hulk Gene Family, Christopher Doan

Electronic Thesis and Dissertation Repository

The HULK gene family participates in regulation of both flowering time and development in the plant Arabidopsis thaliana. The proteins encoded by these genes share conserved domain structures including a proline-rich region (PRR) in the carboxyl-terminus. Based on sequence analysis and the presence of a proline-rich domain, it has been suggested that the HULKs are putative transcription factors in which HUA2 is known to regulate several late-flowering genes: FLC, FLM and MAF2.

To investigate the putative transcriptional activation domain in the carboxyl-terminus of the HULKs, full-length HULKs and deletion constructs were 3-AT titrated in yeast-one hybrids. It …