Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

Biology Faculty Publications

Plant immunity

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Biology

Molecular Regulation Of The Salicylic Acid Hormone Pathway In Plants Under Changing Environmental Conditions, Christina A. M. Rossi, Eric J. R. Marchetta, Jong Hum Kim, Christian Castroverde Jan 2023

Molecular Regulation Of The Salicylic Acid Hormone Pathway In Plants Under Changing Environmental Conditions, Christina A. M. Rossi, Eric J. R. Marchetta, Jong Hum Kim, Christian Castroverde

Biology Faculty Publications

Salicylic acid (SA) is a central plant hormone mediating immunity, growth, and development. Recently, studies have highlighted the sensitivity of the SA pathway to changing climatic factors and the plant microbiome. Here we summarize organizing principles and themes in the regulation of SA biosynthesis, signaling, and metabolism by changing abiotic/biotic environments, focusing on molecular nodes governing SA pathway vulnerability or resilience. We especially highlight advances in the thermosensitive mechanisms underpinning SA-mediated immunity, including differential regulation of key transcription factors (e.g., CAMTAs, CBP60g, SARD1, bHLH059), selective protein–protein interactions of the SA receptor NPR1, and dynamic phase separation of the recently identified …


Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde Oct 2021

Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde

Biology Faculty Publications

In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


Diversity, Function And Regulation Of Cell Surface And Intracellular Immune Receptors In Solanaceae, Jong Hum Kim, Christian Castroverde Apr 2020

Diversity, Function And Regulation Of Cell Surface And Intracellular Immune Receptors In Solanaceae, Jong Hum Kim, Christian Castroverde

Biology Faculty Publications

The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity and …