Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biology

Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots Aug 2016

Optimization Of A Genomic Editing System Using Crispr/Cas9-Induced Site-Specific Gene Integration, Jillian L. Mccool Ms., Nick Hum, Gabriela G. Loots

STAR Program Research Presentations

The CRISPR-Cas system is an adaptive immune system found in bacteria which helps protect against the invasion of other microorganisms. This system induces double stranded breaks at precise genomic loci (1) in which repairs are initiated and insertions of a target are completed in the process. This mechanism can be used in eukaryotic cells in combination with sgRNAs (1) as a tool for genome editing. By using this CRISPR-Cas system, in addition to the “safe harbor locus,” ROSAβ26, the incorporation of a target gene into a site that is not susceptible to gene silencing effects can be achieved through few …


Characterization Of Putative Wnt3a-Inducible Enhancers, Katelynn C. Lee, Nicholas Hum, Aimy Sebastian, Gabriela Loots Aug 2015

Characterization Of Putative Wnt3a-Inducible Enhancers, Katelynn C. Lee, Nicholas Hum, Aimy Sebastian, Gabriela Loots

STAR Program Research Presentations

The Wnt signaling pathway has been previously shown to play a major role in regulating bone metabolism and it is emerging as a target for the therapeutic intervention of bone thinning disorders such as osteoporosis. Several Wnt proteins have been shown to be expressed in bone and mutations in Wnt pathway members such as Wnt co-receptor Lrp5 and Wnt inhibitor Sost have been shown to be associated with low or high bone mass disorders, however, very little is known about specific roles played by different Wnt ligands in bone development, repair and remodeling. To identify downstream targets of Wnt signaling …


Are Circadian Cycles The Dominant Proteome Rhythym In The Intertidal Mussel Mytilus Californianus?, Kristina M. Koster, Cory Elowe, Lars Tomanek Jan 2015

Are Circadian Cycles The Dominant Proteome Rhythym In The Intertidal Mussel Mytilus Californianus?, Kristina M. Koster, Cory Elowe, Lars Tomanek

STAR Program Research Presentations

Mytilus californianus, also known as the California mussel, is a marine bivalve that is abundant along the West coast from Alaska to southern Baja California. They mainly reside in the upper-middle intertidal zone and cling to pier pilings and surf exposed rocks. They create multi-layered beds, which form a habitat for algae and many species of invertebrates. Intertidal mussels live in a naturally dynamic environment. It has previously been reported (Connor and Gracey, 2011) that the 24-hour circadian (day to night) rhythm of the intertidal mussel Mytilus californianus is primarily responsible for its rhythmic gene expression, as opposed to …


Father Convict Cichlids Bite Intruders More Often In Hot Temperatures, Jesse L. Heckendorf Jan 2015

Father Convict Cichlids Bite Intruders More Often In Hot Temperatures, Jesse L. Heckendorf

STAR Program Research Presentations

Convict cichlids (Archocentrus nigrofasciatus) have evolved to be extremely good parents by protecting their brood. Parental care leads to aggressive biting, chasing, and gill flaring to intimidate predators. In this experiment, we show that environmental factors, such as the changing of temperature in this case, affect a male convict cichlid’s aggression toward caring for his offspring when an intruder is introduced. Male convict cichlids attack more in warmer water.