Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biology

Frayed Connections: How Long-Term Nitrogen Additions Disrupt Plant-Soil Interactions And The Carbon Cycle Of A Temperate Forest, Brooke A. Eastman Jan 2022

Frayed Connections: How Long-Term Nitrogen Additions Disrupt Plant-Soil Interactions And The Carbon Cycle Of A Temperate Forest, Brooke A. Eastman

Graduate Theses, Dissertations, and Problem Reports

Forests are expected to mitigate some of the negative effects of climate change by sequestering anthropogenic carbon (C) from the atmosphere, but the degree to which they drawn down C will depend on the availability of key nutrients, such as nitrogen (N). There is a fair amount of uncertainty in the future of the forest C sink, mostly owing to the fate of soil organic matter (SOM) and soil heterotrophic respiration to future conditions. In N limited systems, plants allocate a significant amount of their photosynthate belowground for the acquisition of nutrients, but under conditions of chronic N deposition, plants …


Nitrogen Addition Shapes Soil Phosphorus Availability In Two Reforested Tropical Forests In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Hua Fang, Feifei Zhu, Yunting Fang, Wei Zhang, Juan Huang May 2016

Nitrogen Addition Shapes Soil Phosphorus Availability In Two Reforested Tropical Forests In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Hua Fang, Feifei Zhu, Yunting Fang, Wei Zhang, Juan Huang

Frank S. Gilliam

Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land-use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N-treatments (above ambient) …


Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo Apr 2016

Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo

Frank S. Gilliam

Although nitrogen (N) deposition is a significant threat to herbaceous plant biodiversity worldwide, it is not a new stressor for many developed regions. Only recently has it become possible to estimate historical impacts nationally for the United States. We used 26 years (1985–2010) of deposition data, with ecosystem-specific functional responses from local field experiments and a national critical loads (CL) database, to generate scenario-based estimates of herbaceous species loss. Here we show that, in scenarios using the low end of the CL range, N deposition exceeded critical loads over 0.38, 6.5, 13.1, 88.6, and 222.1 million ha for the Mediterranean …


Nitrogen Deposition Contributes To Soil Acidification In Tropical Ecosystems, Xiankai Lu, Qinggong Mao, Frank S. Gilliam, Yiqi Luo, Jiangming Mo Jun 2014

Nitrogen Deposition Contributes To Soil Acidification In Tropical Ecosystems, Xiankai Lu, Qinggong Mao, Frank S. Gilliam, Yiqi Luo, Jiangming Mo

Biological Sciences Faculty Research

Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening ecosystem health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long-term N deposition on soil acidification processes in tropical forests. We have established a long-term N deposition experiment in an N-rich lowland tropical forest of Southern China since 2002 with N addition as NH4NO3 of 0, 50, 100 and 150 kg …


Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo Feb 2013

Estimated Losses Of Plant Biodiversity Across The U.S. From Historical N Deposition From 1985—2010., Christopher M. Clark, Philip E. Morefield, Frank S. Gilliam, Linda H. Pardo

Biological Sciences Faculty Research

Although nitrogen (N) deposition is a significant threat to herbaceous plant biodiversity worldwide, it is not a new stressor for many developed regions. Only recently has it become possible to estimate historical impacts nationally for the United States. We used 26 years (1985–2010) of deposition data, with ecosystem-specific functional responses from local field experiments and a national critical loads (CL) database, to generate scenario-based estimates of herbaceous species loss. Here we show that, in scenarios using the low end of the CL range, N deposition exceeded critical loads over 0.38, 6.5, 13.1, 88.6, and 222.1 million ha for the Mediterranean …


Nitrogen Addition Shapes Soil Phosphorus Availability In Two Reforested Tropical Forests In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Hua Fang, Feifei Zhu, Yunting Fang, Wei Zhang, Juan Huang Jan 2011

Nitrogen Addition Shapes Soil Phosphorus Availability In Two Reforested Tropical Forests In Southern China, Xiankai Lu, Jiangming Mo, Frank S. Gilliam, Hua Fang, Feifei Zhu, Yunting Fang, Wei Zhang, Juan Huang

Biological Sciences Faculty Research

Scant information is available on how soil phosphorus (P) availability responds to atmospheric nitrogen (N) deposition, especially in the tropical zones. This study examined the effect of N addition on soil P availability, and compared this effect between forest sites of contrasting land-use history. Effects of N addition on soil properties, litterfall production, P release from decomposing litter, and soil P availability were studied in a disturbed (reforested pine forest with previous understory vegetation and litter harvesting) and a rehabilitated (reforested mixed pine/broadleaf forest with no understory vegetation and litter harvesting) tropical forest in southern China. Experimental N-treatments (above ambient) …