Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Dartmouth College

Series

Protein binding

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Biology

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz Aug 2015

A Mitochondria-Anchored Isoform Of The Actin-Nucleating Spire Protein Regulates Mitochondrial Division, Uri Manor, Sadie Bartholomew, Gonen Golani, Eric Christenson, Michael Kozlov, Henry Higgs, James Spudich, Jennifer Lippincott-Schwartz

Dartmouth Scholarship

Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction …


Vegf And Angiopoietin-1 Exert Opposing Effects On Cell Junctions By Regulating The Rho Gef Syx, Siu P. Ngok, Rory Geyer, Miaoliang Liu, Antonis Kourtidis, Sudesh Agrawal, Chuanshen Wu, Himabindu Reddy Seerapu, Laura J. Lewis-Tuffin, Karen L. Moodie, Deborah Huveldt, Ruth Marx, Jay M. Baraban, Peter Storz, Arie Horowitz, Panos Z. Anastasiadis Dec 2012

Vegf And Angiopoietin-1 Exert Opposing Effects On Cell Junctions By Regulating The Rho Gef Syx, Siu P. Ngok, Rory Geyer, Miaoliang Liu, Antonis Kourtidis, Sudesh Agrawal, Chuanshen Wu, Himabindu Reddy Seerapu, Laura J. Lewis-Tuffin, Karen L. Moodie, Deborah Huveldt, Ruth Marx, Jay M. Baraban, Peter Storz, Arie Horowitz, Panos Z. Anastasiadis

Dartmouth Scholarship

Vascular endothelial growth factor (VEGF) and Ang1 (Angiopoietin-1) have opposing effects on vascular permeability, but the molecular basis of these effects is not fully known. We report in this paper that VEGF and Ang1 regulate endothelial cell (EC) junctions by determining the localization of the RhoA-specific guanine nucleotide exchange factor Syx. Syx was recruited to junctions by members of the Crumbs polarity complex and promoted junction integrity by activating Diaphanous. VEGF caused translocation of Syx from cell junctions, promoting junction disassembly, whereas Ang1 maintained Syx at the junctions, inducing junction stabilization. The VEGF-induced translocation of Syx from EC junctions was …


A Fap46 Mutant Provides New Insights Into The Function And Assembly Of The C1d Complex Of The Ciliary Central Apparatus, Jason M. Brown, Christen G. Dipetrillo, Elizabeth F. Smith, George B. Witman Apr 2012

A Fap46 Mutant Provides New Insights Into The Function And Assembly Of The C1d Complex Of The Ciliary Central Apparatus, Jason M. Brown, Christen G. Dipetrillo, Elizabeth F. Smith, George B. Witman

Dartmouth Scholarship

Virtually all motile eukaryotic cilia and flagella have a '9+2' axoneme in which nine doublet microtubules surround two singlet microtubules. Associated with the central pair of microtubules are protein complexes that form at least seven biochemically and structurally distinct central pair projections. Analysis of mutants lacking specific projections has indicated that each may play a unique role in the control of flagellar motility. One of these is the C1d projection previously shown to contain the proteins FAP54, FAP46, FAP74 and FAP221/Pcdp1, which exhibits Ca(2+)-sensitive calmodulin binding. Here we report the isolation and characterization of a Chlamydomonas reinhardtii null mutant for …


Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio Apr 2010

Temporal Regulation Of The Muscle Gene Cascade By Macho1 And Tbx6 Transcription Factors In Ciona Intestinalis, Jamie E. Kugler, Stefan Gazdoiu, Izumi Oda-Ishii, Yale J. Passamaneck, Albert J. Erives, Anna Di Gregorio

Dartmouth Scholarship

For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, …


Calmodulin And Pf6 Are Components Of A Complex That Localizes To The C1 Microtubule Of The Flagellar Central Apparatus, Matthew J. Wargo, Erin E. Dymek, Elizabeth F. Smith Jul 2005

Calmodulin And Pf6 Are Components Of A Complex That Localizes To The C1 Microtubule Of The Flagellar Central Apparatus, Matthew J. Wargo, Erin E. Dymek, Elizabeth F. Smith

Dartmouth Scholarship

Studies of flagellar motility in Chlamydomonas mutants lacking specific central apparatus components have supported the hypothesis that the inherent asymmetry of this structure provides important spatial cues for asymmetric regulation of dynein activity. These studies have also suggested that specific projections associated with the C1 and C2 central tubules make unique contributions to modulating motility; yet, we still do not know the identities of most polypeptides associated with the central tubules. To identify components of the C1a projection, we took an immunoprecipitation approach using antibodies generated against PF6. The pf6 mutant lacks the C1a projection and possesses flagella that only …