Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

PDF

2014

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 87

Full-Text Articles in Biology

Epigenetic Regulation Of Nuclear Hormone Receptor Dax-1, Michael B. Heskett Dec 2014

Epigenetic Regulation Of Nuclear Hormone Receptor Dax-1, Michael B. Heskett

Master's Theses

DAX-1 (NR0B1) is an orphan nuclear receptor that plays a key role in the development and maintenance of steroidogenic tissue in mammals. Dax-1 is also expressed in mouse embryonic stem (ES) cells and is required to maintain pluripotency. Duplication of the X-chromosome in the region containing the NR0B1 gene results in sex reversal, and mutations in NR0B1 cause adrenal hypoplasia congenita. DAX-1 has been observed to act as a corepressor of other nuclear receptors including androgen receptor (AR), estrogen receptor (ER), and steroidogenic factor 1 (SF-1). In addition to pluripotent ES cells, DAX-1 is primarily expressed in select tissues of …


(R)-Desmolactone Is A Sex Pheromone Or Attractant For The Endangered Valley Elderberry Longhorn Beetle Desmocerus Californicus Dimorphus And Several Congeners (Cerambycidae: Lepturinae), A. M. Ray, R. A. Arnold, I. Swift, P. A. Schapker, S. Mccann, C. J. Marshall, J. S. Mcelfresh, J. G. Millar Dec 2014

(R)-Desmolactone Is A Sex Pheromone Or Attractant For The Endangered Valley Elderberry Longhorn Beetle Desmocerus Californicus Dimorphus And Several Congeners (Cerambycidae: Lepturinae), A. M. Ray, R. A. Arnold, I. Swift, P. A. Schapker, S. Mccann, C. J. Marshall, J. S. Mcelfresh, J. G. Millar

Faculty Scholarship

We report here that (4R,9Z)-hexadec-9-en-4-olide [(R)-desmolactone] is a sex attractant or sex pheromone for multiple species and subspecies in the cerambycid genus Desmocerus. This compound was previously identified as a female-produced sex attractant pheromone of Desmocerus californicus californicus. Headspace volatiles from female Desmocerus aureipennis aureipennis contained (R)-desmolactone, and the antennae of adult males of two species responded strongly to synthetic (R)-desmolactone in coupled gas chromatography-electroantennogram analyses. In field bioassays in California, Oregon, and British Columbia, traps baited with synthetic (R)-desmolactone captured males of several Desmocerus species and subspecies. Only male beetles were captured, indicating that this compound acts as a …


Characterization Of Histidine Decarboxylase In Drosophila Using An Internal Flag Epitope, Maxwell Mianecki Dec 2014

Characterization Of Histidine Decarboxylase In Drosophila Using An Internal Flag Epitope, Maxwell Mianecki

Masters Theses

Histamine is a neurotransmitter in arthropods and is responsible for synaptic transmission in vision, mechanosensation, temperature sensing and sleep cycle in Drosophila. Histamine is synthesized by the enzyme histidine decarboxylase (HDC). While histamine is detectable within tissues using current immunofluorescent labeling techniques, immunological approaches have not been successful for HDC itself, with both direct antibodies and terminal epitope tags determined to be ineffective. In order to avoid loss of the epitope tag through putative N-­‐ and C-­‐terminal proteolytic cleavage, known to occur for HDC in other organisms, an internal epitope tag that does not disrupt enzyme function was utilized. A …


Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica Elizabeth Reyes Dec 2014

Targeting Cox-2 And Rank In Aggressive Breast Cancers: Inflammatory Breast Cancer And Triple-Negative Breast Cancer, Monica Elizabeth Reyes

Dissertations & Theses (Open Access)

Inflammatory breast cancer (IBC) and triple-negative breast cancer (TNBC) are two highly aggressive breast cancer subtypes associated with a poor outcome. Despite sensitivity to current treatment, these breast cancers subtypes have a high recurrence rate and proclivity to metastasize early. The aggressiveness of IBC and TNBC have been linked to CSCs and epithelial to mesenchymal transition (EMT), which are critical features of breast cancer progression and metastasis. The clinical challenge faced in the treatment of IBC and TNBC is finding a treatment strategy to target the cancer stem-like (CSC) population to block metastasis. Cyclooxygenase-2 (COX-2) and receptor activator of nuclear …


Role Of Phosphorylation Of Focal Adhesion Kinase At Tyrosine 861 In Prostate Cancer Metastasis, Tanushree Chatterji Dec 2014

Role Of Phosphorylation Of Focal Adhesion Kinase At Tyrosine 861 In Prostate Cancer Metastasis, Tanushree Chatterji

Dissertations & Theses (Open Access)

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that mediates interactions between the extracellular matrix and intracellular signaling pathways critical in promoting numerous cellular functions including adhesion, proliferation, survival and migration. Most FAK functions result from phosphorylation by Src family kinases, which trigger numerous signaling cascades. Overexpression of FAK is associated with metastasis in many solid tumors, including prostate cancer. Hence, understanding the mechanisms by which FAK is regulated in prostate cancer will better elucidate its role in prostate cancer metastasis. Work in this dissertation tested the hypothesis that altered phosphorylation of FAK is critical for cell migration and …


Intercellular Cooperation And Competition In Brain Cancers: Lessons From Drosophila And Human Studies, Indrayani Waghmare, Austin Roebke, Mutsuko Minata, Madhuri Kango-Singh, Ichiro Nakano Nov 2014

Intercellular Cooperation And Competition In Brain Cancers: Lessons From Drosophila And Human Studies, Indrayani Waghmare, Austin Roebke, Mutsuko Minata, Madhuri Kango-Singh, Ichiro Nakano

Biology Faculty Publications

Glioblastoma (GBM) is a primary brain cancer with an extremely poor prognosis. GBM tumors contain heterogeneous cellular components, including a small subpopulation of tumor cells termed glioma stem cells (GSCs). GSCs are characterized as chemotherapy- and radiotherapy-resistant cells with prominent tumorigenic ability. Studies in Drosophila cancer models demonstrated that interclonal cooperation and signaling from apoptotic clones provokes aggressive growth of neighboring tumorigenic clones, via compensatory proliferation or apoptosis induced proliferation. Mechanistically, these aggressive tumors depend on activation of Jun-N-terminal kinase (upstream of c-JUN), and Drosophila Wnt (Wg) in the apoptotic clones. Consistent with these nonmammalian studies, data from several mammalian …


Astrocyte-Specific Regulation Of Hmecp2 Expression In Drosophila, David Hess-Homeier, Chia-Yu Fan, Tarun Gupta, Ann-Shyn Chiang, Sarah J. Certel Oct 2014

Astrocyte-Specific Regulation Of Hmecp2 Expression In Drosophila, David Hess-Homeier, Chia-Yu Fan, Tarun Gupta, Ann-Shyn Chiang, Sarah J. Certel

Biological Sciences Faculty Publications

Alterations in the expression of Methyl-CpG-binding protein 2 (MeCP2) either by mutations or gene duplication leads to a wide spectrum of neurodevelopmental disorders including Rett Syndrome and MeCP2 duplication disorder. Common features of Rett Syndrome (RTT), MeCP2 duplication disorder, and neuropsychiatric disorders indicate that even moderate changes in MeCP2 protein levels result in functional and structural cell abnormalities. In this study, we investigated two areas of MeCP2 pathophysiology using Drosophila as a model system: the effects of MeCP2 glial gain-of-function activity on circuits controlling sleep behavior, and the cell-type specific regulation of MeCP2 expression. In this study, we first examined …


Modulation Of Host Phosphatidylinositol Phosphates By Salmonella Effector Protein Sopb, Heather L. Piscatelli Oct 2014

Modulation Of Host Phosphatidylinositol Phosphates By Salmonella Effector Protein Sopb, Heather L. Piscatelli

Open Access Dissertations

Salmonella spp. are gram negative bacteria capable of infecting a number of eukaryotic hosts. In humans, Salmonella infection can range anywhere from acute gastroenteritis to typhoid fever which can oftentimes be fatal.Salmonella are facultative intracellular pathogens that have acquired the ability to enter non-phagocytic cells such as those lining the intestinal epithelium. Uptake into epithelial cells is mediated by the Salmonellapathogenicity island 1 (SPI1) encoded type III secretion system (T3SS), a needle-like complex composed of over 20 proteins that translocates effector proteins directly into the host cell cytosol. Salmonella possess a second type III secretion system encoded on …


Associated Behavioral, Genetic, And Gene Expression Variation With Alternative Life History Tactics In Salmonid Fishes, Ashley Chin-Baarstad Oct 2014

Associated Behavioral, Genetic, And Gene Expression Variation With Alternative Life History Tactics In Salmonid Fishes, Ashley Chin-Baarstad

Open Access Dissertations

Individual differences in behavior can have potential fitness consequences and often reflect underlying genetic variation. My research focuses on three objectives related to individual level variation: 1) evaluating the innate behavioral variation within and between individuals, families, and progeny of different life-history types across time; 2) testing for differences in gene expression within the brain associated with this behavioral variation; and 3) using genetic polymorphisms to test for associations with ecotype, as well as population structure, in polymorphic populations. First, we evaluated the variation in a suite of ecologically relevant behaviors across time in juvenile progeny produced from crosses within …


Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson Oct 2014

Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson

Open Access Dissertations

The nucleus is a membrane bound organelle and regulation center for gene expression in the cell. Mechanical forces transfer to the nucleus directly and indirectly through specific cellular cytoskeletal structures and pathways. There is increasing evidence that the transferred forces to the nucleus orchestrate gene expression activity. Methods to characterize nuclear mechanics typically study isolated cells or cells embedded in 3D gel matrices. Often report only aspect ratio and volume changes, measures that oversimplify the inherent complexity of internal strain patterns. This presents technical challenges to simultaneously observe small scale nuclear mechanics and gene expression levels inside the nuclei of …


Impact Of Mtr4 Structural Domains On Its Enzymatic Activities, In The Regulation Of Nuclear Rna Turnover, Li Yan Oct 2014

Impact Of Mtr4 Structural Domains On Its Enzymatic Activities, In The Regulation Of Nuclear Rna Turnover, Li Yan

Dissertations (1934 -)

RNA processing and turnover plays an important role in RNA maturation, metabolism and quality control, which contribute to gene regulation and cell health. The TRAMP complex, composed of an RNA binding protein Air2p, a poly-A polymerase Trf4p, and a RNA helicase Mtr4p, assist nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae, like tRNAiMet turnover, 5'ETS degradation and rRNA processing. Mtr4p structure reveals a novel protruding arch domain, which contains the recognizable KOW domain and a stalk domain. Except for the two conserved RecA-like helicase domains, the helicase core contains two other structural domains, a winged helix that connects arch …


Editorial Overview: Environmental Physiology: Insect Environmental Physiology, Brent J. Sinclair Oct 2014

Editorial Overview: Environmental Physiology: Insect Environmental Physiology, Brent J. Sinclair

Biology Publications

No abstract provided.


Enhanced Expression Of Codon Optimized Mycobacterium Avium Subsp. Paratuberculosis Antigens In Lactobacillus Salivarius, Christopher D. Johnston, John P. Bannatine, Rodney Govender, Lorraine Endersen, Daniel Pletzer, Helge Weingart, Aidan Coffey, Jim O'Mahony, Roy D. Sleator Sep 2014

Enhanced Expression Of Codon Optimized Mycobacterium Avium Subsp. Paratuberculosis Antigens In Lactobacillus Salivarius, Christopher D. Johnston, John P. Bannatine, Rodney Govender, Lorraine Endersen, Daniel Pletzer, Helge Weingart, Aidan Coffey, Jim O'Mahony, Roy D. Sleator

Department of Biological Sciences Publications

It is well documented that open reading frames containing high GC content show poor expression in A+T rich hosts. Specifically, G+C-rich codon usage is a limiting factor in heterologous expression of Mycobacterium avium subsp. paratuberculosis (MAP) proteins using Lactobacillus salivarius. However, re-engineering opening reading frames through synonymous substitutions can offset codon bias and greatly enhance MAP protein production in this host. In this report, we demonstrate that codon-usage manipulation of MAP2121c can enhance the heterologous expression of the major membrane protein (MMP), analogous to the form in which it is produced natively by MAP bacilli. When heterologously over-expressed, antigenic determinants …


Serotonergic Signaling Pathways That Suppress Amyloid Beta In Mouse Models Of Ad, Jonathan Robert Fisher Aug 2014

Serotonergic Signaling Pathways That Suppress Amyloid Beta In Mouse Models Of Ad, Jonathan Robert Fisher

All Theses and Dissertations (ETDs)

A diagnosis of Alzheimer's disease is one of the most devastating things one can hear. This terrible disease robs people of their ability to remember cherished events as their brains become riddled with beta amyloid plaques. Alzheimer's is especially terrifying because there currently are no effective treatments for slowing or stopping the disease. However, recent research has shown that plaque formation is correlated to concentrations of amyloid beta. This discovery suggests that limiting amyloid beta production could potentially halt the disease. One promising avenue for slowing amyloid beta production is serotonergic signaling.

This dissertation presents evidence for a direct sequence …


Enhancement Of Chronically Induced Breast Carcinogenesis By Combined Environmental And Dietary Carcinogens And Suppression By Dietary Agents, Lenora A. Pluchino Ph.D. Aug 2014

Enhancement Of Chronically Induced Breast Carcinogenesis By Combined Environmental And Dietary Carcinogens And Suppression By Dietary Agents, Lenora A. Pluchino Ph.D.

Lenora A. Pluchino, Ph.D.

Most breast cancers occur sporadically due to long-term exposure to low-dose carcinogens present in our environment and diet. American lifestyles involve frequent exposures to smoke, polluted air, and high temperature-cooked meats comprising multiple carcinogens, such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), benzo[α[alpha]]pyrene (B[α[alpha]]P), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). To investigate whether these carcinogens may act together to enhance breast cell carcinogenesis, we used our chronically-induced breast cell carcinogenesis model wherein we repeatedly expose non-cancerous human breast epithelial MCF10A cells to physiologically-achievable doses of carcinogens to progressively induce cellular acquisition of cancer-associated properties including reduced dependence on growth factors, anchorage-independent growth, increased cell proliferation, migration and …


Electrophoresis Staining: A New Method Of Whole Mount Staining, Mitchell G. Ayers, Sarah Calve, Zhiyu Li Aug 2014

Electrophoresis Staining: A New Method Of Whole Mount Staining, Mitchell G. Ayers, Sarah Calve, Zhiyu Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advances in tissue clearing techniques have allowed almost a ten-fold increase in the viewing depth of confocal microscopy. This allows for intact cellular structures to be rendered in 3D. However, viewing tissues to this depth is often limited to endogenous fluorescence as passive diffusion of antibodies via whole mount staining can take weeks. Our lab is developing a new method involving electrophoresis as a driving force that will promote active antibody binding deep into tissue, reducing the amount of time needed to stain for cellular structures. Due to the inherent charge within antibodies, they are able to be directionally forced …


The Role Of Lactate Dehydrogenase B In Aerobic Glycolysis-Mediated Resistance To Ab Toxicity, Tyler Tam Aug 2014

The Role Of Lactate Dehydrogenase B In Aerobic Glycolysis-Mediated Resistance To Ab Toxicity, Tyler Tam

Electronic Thesis and Dissertation Repository

Alzheimer’s disease is a progressive, neurodegenerative disorder characterized by the accumulation of amyloid β (Aβ) plaques in affected brain regions. Strong evidence indicates that Aβ exerts neurotoxic effects by promoting mitochondrial dysfunction and ROS production, leading to widespread oxidative damage and activation of pro-apoptotic mechanisms. Past investigations suggest that neuronal resistance to Aβ toxicity is partly mediated by a Warburg Effect-like metabolism, in which cells exhibit elevated glycolytic activity and lactate production, while limiting mitochondrial respiration. Elevated lactate dehydrogenase A (LDHA) activity, which catalyzes lactate production from pyruvate, has been demonstrated to counter Aβ-induced oxidative stress and neurotoxicity, however the …


Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti Aug 2014

Strategies To Sensitize Bladder Cancer Cells To Small Molecule Inhibitors Targeting The Pi3k Pathway, Giovanni Nitti

Dissertations & Theses (Open Access)

After many years of cancer research, it is well accepted by the scientific community that the future cure for this disease lies in a personalized therapeutic approach. Anticipating therapeutic outcome based on the genetic signature of a tumor has become the new paradigm. The PI3K pathway represents an ideal target for bladder cancer, as many of the key proteins of this pathway are altered or mutated in this particular type of cancer. Several small molecule inhibitors have been developed to target this pathway, but their efficacy has been shown to be heterogeneous among different cell lines and mostly cytostatic but …


Identification And Characterization Of Msab Gene Involved In Biofilm Formation And Virulence In Staphylococcus Aureus, Amelsaad Elbarasi Aug 2014

Identification And Characterization Of Msab Gene Involved In Biofilm Formation And Virulence In Staphylococcus Aureus, Amelsaad Elbarasi

Master's Theses

Staphylococcus aureus is an important human pathogen that causes a wide variety of life-threatening infections ranging from minor skin and oral infections to severe infections, such as bacteremia, pneumonia, osteomyelitis, or endocarditis due to the presence and secretion of a large number of virulence factors that are controlled by global virulence regulators in complex networks. Furthermore, S. aureus infections have become a threat to public health because of their high potential to form biofilm, and their ability to resist a wide range of antibiotics has exacerbated further. Therefore, understanding the regulatory networks and developing a drug targeting these networks has …


Role Of Msaa Gene In Regulation Of The Msaabcr Operon And Biofilm Development In Staphylococcus Aureus, Ahmed Alzuway Aug 2014

Role Of Msaa Gene In Regulation Of The Msaabcr Operon And Biofilm Development In Staphylococcus Aureus, Ahmed Alzuway

Master's Theses

Staphylococcus aureus is an important human pathogen that causes wide variety of diseases ranging from chronic biofilm associated infection to acute life threatening infection such as bacteremia, pneumonia, osteomyelitis, or endocarditis, despite the progress with antibiotics used in the treatment of bacterial infections. Furthermore, increased use of prosthetic and indwelling devices in modern medical practices has led to increased infections due to S. aureus. Treating S. aureus infections have become difficult owing to its ability to resist most of the antibiotics; this problem is further exacerbated by ability of MRSA strains to form biofilms. Emergence of community-acquired methicillin resistance …


Zebrafish As A Model For Determining The Mechanisms Causing Deafness In Myh9-Related Disease, Luke David Spychalla Aug 2014

Zebrafish As A Model For Determining The Mechanisms Causing Deafness In Myh9-Related Disease, Luke David Spychalla

Theses and Dissertations

Approximately 1 in 500 infants are diagnosed with hearing loss, and about half of these cases can be traced to genetic defects. Several hundred genes have been implicated in deafness, including MYH9, which codes for the conventional motor protein non-muscle myosin IIA (NMIIA). Mutations in MYH9 lead to syndromic MYH9-related diseases, which include deafness as a variable symptom, as well as non-syndromic autosomal deafness DFNA17. Despite its identification as a deafness gene, the functions of MYH9 in ear development and hearing remain unknown. To study this role, we will use zebrafish as a model. Zebrafish offer significant advantages including established …


Controlling Pseudomonas Aeruginosa Biofilms And Persister Cells By Manipulating Cell-Cell Signaling, Shuyuan Ma Aug 2014

Controlling Pseudomonas Aeruginosa Biofilms And Persister Cells By Manipulating Cell-Cell Signaling, Shuyuan Ma

Theses - ALL

Bacterial cells often form sessile biofilms that are up to 1,000 times more resistant to antimicrobial agents than free-living cells. Meanwhile, bacteria produce a small subpopulation of slow-growing or non-growing persister cells that exhibit high tolerance to antibiotics. Both biofilms and persister cells play important roles in the recalcitrance of chronic infections. Recent studies have shown that bacterial cell-to-cell communication, named quorum sensing (QS), is involved in the biofilm and persister formation.

In this study, we investigated the effects of quorum sensing signals N-(3-oxododecanoyl)-homoserine lactone (3-oxo-C12-HSL) and N-butyryl homoserine lactone (C4-HSL) on isolated Pseudomonas aeruginosa PAO1 and PDO300 persister cells. …


Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill Jul 2014

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill

Department of Biological Sciences Publications

The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.


Key Residues Of Human Cytoplasmic Protein Tyrosine Phosphatase-A And -B For Substrate Binding And Specificity, Byunghyun Park Jul 2014

Key Residues Of Human Cytoplasmic Protein Tyrosine Phosphatase-A And -B For Substrate Binding And Specificity, Byunghyun Park

Open Access Theses

Reversible tyrosine phosphorylation plays an important role in signaling pathways that are essential for regulating cellular growth, differentiation and metabolism. Moreover, several human diseases such as diabetes, obesity and cancers are associated with the deregulation of protein tyrosine phosphatases (PTPs). Several studies provide evidence that PTPs not only contribute to cellular differentiation, but over-expression of these molecules also leads to transformation of non-transfomed cells as well. Based on these results, designing specific PTP inhibitors may ultimately function as potential therapeutic agents to treat various diseases including cancer, diabetes, and autoimmune diseases. EphA2 is a receptor tyrosine kinase which is hypo-phosphorylated …


Manipulating The Tumor Microenvironment For Therapeutic Benefit, Kate M. Bailey Jun 2014

Manipulating The Tumor Microenvironment For Therapeutic Benefit, Kate M. Bailey

USF Tampa Graduate Theses and Dissertations

The physical tumor microenvironment contributes significantly to carcinogenesis, cancer progression and metastatic dissemination. Two main components of the tumor microenvironment, hypoxia and acidosis, are present in nearly every solid tumor and act as powerful selection forces against the tumor. Hypoxia and acidosis promote tumor heterogeneity and contribute to chemotherapy and radiotherapy resistance. This dissertation interrogates methods to target the tumor microenvironment including two novel studies describing mechanisms of buffer therapy resistance and targeting tumor hypoxia with vasodilators to enhance the efficacy of a hypoxia activated prodrug, TH-302.

In the first study, mechanisms of buffer therapy resistance were identified and detailed. …


Fty720 (Fingolimod) Provides Insight Into The Molecular Mechanisms Of Multiple Sclerosis, Madelyn Elizabeth Crawford Jun 2014

Fty720 (Fingolimod) Provides Insight Into The Molecular Mechanisms Of Multiple Sclerosis, Madelyn Elizabeth Crawford

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Multiple sclerosis (MS) is a neurodegenerative disorder caused by a prolonged immune- mediated inflammatory response that targets myelin. Nearly all of the drugs approved for the treatment of MS are general immunosuppressants or only function in symptom management. The oral medication fingolimod, however, is reported to have direct therapeutic effects on cells of the central nervous system in addition to immunomodulatory functions. Fingolimod is known to interact with sphingosine-1-phosphate (S1P) receptors, and the most widely- accepted theory for its mechanism of action is functional antagonism of the receptor. This review examines significant neuromodulatory effects achieved by functional antagonism of the …


Islet Regenerative Properties Of Ex Vivo Expanded Hematopoietic Progenitor Cells, Ayesh K. Seneviratne Jun 2014

Islet Regenerative Properties Of Ex Vivo Expanded Hematopoietic Progenitor Cells, Ayesh K. Seneviratne

Electronic Thesis and Dissertation Repository

Human umbilical cord blood (UCB) progenitor cells with high aldehyde dehydrogenase activity (ALDHhi), can stimulate endogenous islet regeneration after transplantation into mice with steptozotocin (STZ)-induced diabetes. However, UCB ALDHhi cell are extremely rare, and expansion will be required to develop cell-mediated strategies to treat patients with diabetes. To increase the number of progenitor cells available for clinical application, we expanded ALDHhi UCB cells under clinically applicable, serum-free hematopoietic-restricted conditions. 6 day expansion resulted in a 15-fold increase in total cell number, and a 3-fold increase in the number of HPC retaining high ALDH (ALDHhi HPC) …


The Role Of The N-Terminus On The Enzymatic Activity Of Dutpase From Dictyostelium Discoideum, Kyle C. Varon Jun 2014

The Role Of The N-Terminus On The Enzymatic Activity Of Dutpase From Dictyostelium Discoideum, Kyle C. Varon

School of Biological Sciences: Dissertations, Theses, and Student Research

The enzyme deoxyuridine triphosphatase (dUTPase) (EC 3.6.1.23) converts dUTP to dUMP, thus shifting the dUTP to dUMP ratio in the cell. The molecule dUTP is subject to mis-incorporation into DNA due to lack of distinguishing by DNA polymerase. Uracil incorporation can be repaired with base excision repair mechanisms but may create overwhelming DNA strand breaks proving to be detrimental to the cell. Most dUTPases of eukaryotes are homotrimeric and contain five highly conserved motifs responsible for catalysis and substrate binding. Many dUTPases of eukaryotes possess a leading and core region in their sequence. The core region is composed of the …


Vitamin A Deficiency Causes Ovulation Abnormalities In Mice, Rebecca Ursin Jun 2014

Vitamin A Deficiency Causes Ovulation Abnormalities In Mice, Rebecca Ursin

DePaul Discoveries

Retinoic acid (RA) is an active metabolite of vitamin A (VA) and is involved in tissue organization, patterning, and growth. RA has been shown to regulate male reproduction, however information on its role in ovary development is limited. To investigate the functions of RA in the ovary, we examined its role in ovary development and ovulation using an in vivo dietary VA-deprivation animal model. Our preliminary results have shown that VA deficiency causes a variety of ovarian pathologies, including reduced numbers of total follicles and corpus lutea, formation of hemorrhagic and atretic follicles, and formation of bursa and follicular cysts. …


Identification Of Novel Small Rnas And Characterization Of The 6s Rna Of Coxiella Burnetii, Indu Warrier, Linda D. Hicks, James M. Battisti, Rahul Raghavan, Michael F. Minnick Jun 2014

Identification Of Novel Small Rnas And Characterization Of The 6s Rna Of Coxiella Burnetii, Indu Warrier, Linda D. Hicks, James M. Battisti, Rahul Raghavan, Michael F. Minnick

Biology Faculty Publications and Presentations

Coxiella burnetii, an obligate intracellular bacterial pathogen that causes Q fever, undergoes a biphasic developmental cycle that alternates between a metabolically-active large cell variant (LCV) and a dormant small cell variant (SCV). As such, the bacterium undoubtedly employs complex modes of regulating its lifecycle, metabolism and pathogenesis. Small RNAs (sRNAs) have been shown to play important regulatory roles in controlling metabolism and virulence in several pathogenic bacteria. We hypothesize that sRNAs are involved in regulating growth and development of C. burnetii and its infection of host cells. To address the hypothesis and identify potential sRNAs, we subjected total RNA isolated …