Open Access. Powered by Scholars. Published by Universities.®

Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Biology

Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty Jan 2023

Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty

Dartmouth College Ph.D Dissertations

Cilia are structures present on most eukaryotic cells which provide important signaling and motile components to cells from early development to fully differentiated and matured cells. Regulation of these structures is critical to proper functioning of the cell and is known to be tied to the cell cycle. Preparation for ciliary assembly following cell cycle exit and ciliary disassembly following cell cycle reentry requires components throughout the cell body and within the cilium to facilitate this process. Here I identify how the cell adapts to ensure modifications to cilia occur for assembly or disassembly using the model organism Chlamydomonas reinhardtii. …


Tertiary Alphabet For The Observable Protein Structural Universe, Craig\ O. Mackenzie, Jianfu Zhou, Gevorg Grigoryan Nov 2016

Tertiary Alphabet For The Observable Protein Structural Universe, Craig\ O. Mackenzie, Jianfu Zhou, Gevorg Grigoryan

Dartmouth Scholarship

Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. …


Dissection Of Molecular Assembly Dynamics By Tracking Orientation And Position Of Single Molecules In Live Cells, Shalin B. Mehta, Molly Mcquilken, Patrick J. La Riviere, Patricia Occhipinti, Amitabh Verma, Rudolf Oldenbourg, Amy Gladfelter, Tomomi Tani Sep 2016

Dissection Of Molecular Assembly Dynamics By Tracking Orientation And Position Of Single Molecules In Live Cells, Shalin B. Mehta, Molly Mcquilken, Patrick J. La Riviere, Patricia Occhipinti, Amitabh Verma, Rudolf Oldenbourg, Amy Gladfelter, Tomomi Tani

Dartmouth Scholarship

Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system …


A Distinct Tethering Step Is Vital For Vacuole Membrane Fusion, Michael Zick, William T. Wickner Sep 2014

A Distinct Tethering Step Is Vital For Vacuole Membrane Fusion, Michael Zick, William T. Wickner

Dartmouth Scholarship

Past experiments with reconstituted proteoliposomes, employing assays that infer membrane fusion from fluorescent lipid dequenching, have suggested that vacuolar SNAREs alone suffice to catalyze membrane fusion in vitro. While we could replicate these results, we detected very little fusion with the more rigorous assay of lumenal compartment mixing. Exploring the discrepancies between lipid-dequenching and content-mixing assays, we surprisingly found that the disposition of the fluorescent lipids with respect to SNAREs had a striking effect. Without other proteins, the association of SNAREs in trans causes lipid dequenching that cannot be ascribed to fusion or hemifusion. Tethering of the SNARE-bearing proteoliposomes was …


Septin Assemblies Form By Diffusion-Driven Annealing On Membranes, Andrew A. Bridges, Huaiying Zhang, Shalin B. Mehta, Patricia Occhipinti, Tomomi Tani, Amy S. Gladfelter Feb 2014

Septin Assemblies Form By Diffusion-Driven Annealing On Membranes, Andrew A. Bridges, Huaiying Zhang, Shalin B. Mehta, Patricia Occhipinti, Tomomi Tani, Amy S. Gladfelter

Dartmouth Scholarship

Septins assemble into filaments and higher-order structures that act as scaffolds for diverse cell functions including cytokinesis, cell polarity, and membrane remodeling. Despite their conserved role in cell organization, little is known about how septin filaments elongate and are knitted together into higher-order assemblies. Using fluorescence correlation spectroscopy, we determined that cytosolic septins are in small complexes, suggesting that septin filaments are not formed in the cytosol. When the plasma membrane of live cells is monitored by total internal reflection fluorescence microscopy, we see that septin complexes of variable size diffuse in two dimensions. Diffusing septin complexes collide and make …


Gene Expression Studies For The Analysis Of Domoic Acid Production In The Marine Diatom Pseudo-Nitzschia Multiseries, Katie Boissonneault, Brooks M. Henningsen, Stephen S. Bates, Deborah L. Robertson, Sean Milton, Jerry Pelletier, Deborah A. Hogan, David E. Housman Nov 2013

Gene Expression Studies For The Analysis Of Domoic Acid Production In The Marine Diatom Pseudo-Nitzschia Multiseries, Katie Boissonneault, Brooks M. Henningsen, Stephen S. Bates, Deborah L. Robertson, Sean Milton, Jerry Pelletier, Deborah A. Hogan, David E. Housman

Dartmouth Scholarship

Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions.


Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd Nov 2010

Excision Dynamics Of Vibrio Pathogenicity Island-2 From Vibrio Cholerae: Role Of A Recombination Directionality Factor Vefa, Salvador Almagro-Moreno, Michael G. Napolitano, E. Fidelma Boyd

Dartmouth Scholarship

Vibrio Pathogenicity Island-2 (VPI-2) is a 57 kb region present in choleragenic V. cholerae isolates that is required for growth on sialic acid as a sole carbon source. V. cholerae non-O1/O139 pathogenic strains also contain VPI-2, which in addition to sialic acid catabolism genes also encodes a type 3 secretion system in these strains. VPI-2 integrates into chromosome 1 at a tRNA-serine site and encodes an integrase intV2 (VC1758) that belongs to the tyrosine recombinase family. ntV2 is required for VPI-2 excision from chromosome 1, which occurs at very low levels, and formation of a non-replicative circular intermediate.


Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros Sep 2010

Physical Interaction Between Vivid And White Collar Complex Regulates Photoadaptation In Neurospora, Chen-Hui H. Chen, Bradley S. Demay, Amy S. Gladfelter, Jay Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Photoadaptation, the ability to attenuate a light response on prolonged light exposure while remaining sensitive to escalating changes in light intensity, is essential for organisms to decipher time information appropriately, yet the underlying molecular mechanisms are poorly understood. In Neurospora crassa, VIVID (VVD), a small LOV domain containing blue-light photoreceptor protein, affects photoadaptation for most if not all light-responsive genes. We report that there is a physical interaction between VVD and the white collar complex (WCC), the primary blue-light photoreceptor and the transcription factor complex that initiates light-regulated transcriptional responses in Neurospora. Using two previously characterized VVD mutants, we show …


Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun Nov 2009

Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun

Dartmouth Scholarship

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of …


Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold Nov 2009

Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold

Dartmouth Scholarship

In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the …


Stoichiometric Controls Of Mercury Dilution By Growth, Roxanne Karimi, Celia Y. Chen, Paul C. Pickhardt, Nicholas S. Fisher, Carol L. Folt May 2007

Stoichiometric Controls Of Mercury Dilution By Growth, Roxanne Karimi, Celia Y. Chen, Paul C. Pickhardt, Nicholas S. Fisher, Carol L. Folt

Dartmouth Scholarship

Rapid growth could significantly reduce methylmercury (MeHg) concentrations in aquatic organisms by causing a greater than proportional gain in biomass relative to MeHg (somatic growth dilution). We hypothesized that rapid growth from the consumption of high-quality algae, defined by algal nutrient stoichiometry, reduces MeHg concentrations in zooplankton, a major source of MeHg for lake fish. Using a MeHg radiotracer, we measured changes in MeHg concentrations, growth and ingestion rates in juvenile Daphnia pulex fed either high (C:P = 139) or low-quality (C:P = 1317) algae (Ankistrodesmus falcatus) for 5 d. We estimated Daphnia steady-state MeHg concentrations, using a …


Two Crystal Structures Of Dihydrofolate Reductase-Thymidylate Synthase From Cryptosporidium Hominis Reveal Protein–Ligand Interactions Including A Structural Basis For Observed Antifolate Resistance, Amy C. Anderson Feb 2005

Two Crystal Structures Of Dihydrofolate Reductase-Thymidylate Synthase From Cryptosporidium Hominis Reveal Protein–Ligand Interactions Including A Structural Basis For Observed Antifolate Resistance, Amy C. Anderson

Dartmouth Scholarship

Cryptosporidium hominis is a protozoan parasite that causes acute gastro- intestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein ligand interactions in two crystal structures of dihydrofolate reductase- thymidylate synthase 􏰀DHFR-TS) from C. hominis, determined at 2.8 and 2.87 AÊ resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of …


Structure And Function Analysis Of Lin-14, A Temporal Regulator Of Postembryonic Developmental Events In Caenorhabditis Elegans, Yang Hong, Rosalind C. Lee, Victor Ambros Dec 1999

Structure And Function Analysis Of Lin-14, A Temporal Regulator Of Postembryonic Developmental Events In Caenorhabditis Elegans, Yang Hong, Rosalind C. Lee, Victor Ambros

Dartmouth Scholarship

During postembryonic development of Caenorhabditis elegans, the heterochronic gene lin-14 controls the timing of developmental events in diverse cell types. Three alternativelin-14 transcripts are predicted to encode isoforms of a novel nuclear protein that differ in their amino-terminal domains. In this paper, we report that the alternative amino-terminal domains of LIN-14 are dispensable and that a carboxy-terminal region within exons 9 to 13 is necessary and sufficient for in vivo LIN-14 function. A transgene capable of expressing only one of the three alternativelin-14 gene products rescues a lin-14 null mutation and is developmentally regulated by lin-4. …


A Role For The Light-Dependent Phosphorylation Of Visual Arrestin, Paul G. Alloway, Patrick J. Dolph May 1999

A Role For The Light-Dependent Phosphorylation Of Visual Arrestin, Paul G. Alloway, Patrick J. Dolph

Dartmouth Scholarship

Arrestins are regulatory proteins that participate in the termination of G protein-mediated signal transduction. The major arrestin in the Drosophila visual system, Arrestin 2 (Arr2), is phosphorylated in a light-dependent manner by a Ca2+/calmodulin-dependent protein kinase and has been shown to be essential for the termination of the visual signaling cascade in vivo. Here, we report the isolation of nine alleles of the Drosophila photoreceptor cell-specific arr2 gene. Flies carrying each of these alleles underwent light-dependent retinal degeneration and displayed electrophysiological defects typical of previously identified arrestin mutants, including an allele encoding a protein that lacks the major Ca2+/calmodulin-dependent protein …


Ets-Core Binding Factor: A Common Composite Motif In Antigen Receptor Gene Enhancers, Batu Erman, Marta Cortes, Barbara S. Nikolajczyk, Nancy A. Speck, Ranjan Sen Dec 1997

Ets-Core Binding Factor: A Common Composite Motif In Antigen Receptor Gene Enhancers, Batu Erman, Marta Cortes, Barbara S. Nikolajczyk, Nancy A. Speck, Ranjan Sen

Dartmouth Scholarship

A tripartite domain of the murine immunoglobulin μ heavy-chain enhancer contains the μA and μB elements that bind ETS proteins and the μE3 element that binds leucine zipper-containing basic helix-loop-helix (bHLH-zip) factors. Analysis of the corresponding region of the human μ enhancer revealed high conservation of the μA and μB motifs but a striking absence of the μE3 element. Instead of bHLH-zip proteins, we found that the human enhancer bound core binding factor (CBF) between the μA and μB elements; CBF binding was shown to be a common feature of both murine and human enhancers. Furthermore, mutant enhancers that bound …


Lag-2 May Encode A Signaling Ligand For The Glp-1 And Lin-12 Receptors Of C-Elegans, Samuel T. Henderson, Dali Gao, Eric J. Lambie, Judith Kimble Oct 1994

Lag-2 May Encode A Signaling Ligand For The Glp-1 And Lin-12 Receptors Of C-Elegans, Samuel T. Henderson, Dali Gao, Eric J. Lambie, Judith Kimble

Dartmouth Scholarship

The C. elegans lag-2 gene is required for several cell-cell interactions that rely on the receptors GLP-1 and LIN-12. In this paper, we report that lag-2 encodes a putative membrane protein with sequence similarity to Drosophila Delta, a proposed ligand for the Notch receptor. Furthermore, we show that the lag-2 promoter drives expression of a reporter protein in the signaling distal tip cell (DTC) of the DTC/germline interaction. By in situ hybridization, we have found that endogenous lag-2 mRNA is present in the DTC but not the germ line. One fusion protein, called LAG-2::beta-gal(intra), rescues a lag-2 null mutant and …


The Pha-4 Gene Is Required To Generate The Pharyngeal Primordium Of Caenorhabditis-Elegans, Susan E. Mango, Eric J. Lambie, Judith Kimble Oct 1994

The Pha-4 Gene Is Required To Generate The Pharyngeal Primordium Of Caenorhabditis-Elegans, Susan E. Mango, Eric J. Lambie, Judith Kimble

Dartmouth Scholarship

In the 4-cell Caenorhabditis elegans embryo, two blastomeres are destined to generate pharyngeal cells, each by a distinct developmental strategy: one pathway is inductive, while the other is autonomous. Here, we identify the pha-4 locus. In animals lacking pha-4 activity, an early step in pharyngeal organogenesis is blocked: no pharyngeal primordium is formed and differentiated pharyngeal cells are absent. Most other tissues are generated normally in pha-4 mutants, including cells related to pharyngeal cells by cell lineage and position. Thus, pha-4 activity is required to form the pharyngeal primordium. We propose that pha-4 marks a convergence of the inductive and …


The Primary Structure Of A Fungal Chitin Deacetylase Reveals The Function For Two Bacterial Gene Products., Dimitris Kafetzopoulos, George Thireos, John N. Vournakis, Vassilis Bouriotis Sep 1993

The Primary Structure Of A Fungal Chitin Deacetylase Reveals The Function For Two Bacterial Gene Products., Dimitris Kafetzopoulos, George Thireos, John N. Vournakis, Vassilis Bouriotis

Dartmouth Scholarship

Chitin deacetylase (EC 3.5.1.41) hydrolyzes the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin. A cDNA to the Mucor rouxii mRNA encoding chitin deacetylase was isolated, characterized, and sequenced. Protein sequence comparisons revealed significant similarities of the fungal chitin deacetylase to rhizobial nodB proteins and to an uncharacterized protein encoded by a Bacillus stearothermophilus open reading frame. These data suggest the functional homology of these evolutionarily distant proteins. NodB is a chitooligosaccharide deacetylase essential for the biosynthesis of the bacterial nodulation signals, termed Nod factors. The observed similarity of chitin deacetylase to the B. stearothermophilus gene product suggests that this gene …


Evidence For Helical Structures In Poly(1-Olefin Sulfones) By Transmission Electron Microscopy, George C. Ruben, W H. Stockmayer May 1992

Evidence For Helical Structures In Poly(1-Olefin Sulfones) By Transmission Electron Microscopy, George C. Ruben, W H. Stockmayer

Dartmouth Scholarship

Transmission electron microscope images were obtained of fractions of poly(1-tetradecene sulfone) and poly(cyclohexene sulfone) cast from very dilute solutions (0.007%, wt/vol) and rapidly freeze-dried on a mica surface. The samples were then vertically platinum-carbon (Pt-C) replicated with 9 +/- 0.3-A Pt-C and held together with 128 A of electron-transparent evaporated carbon. The Pt-C coating enlarges the molecular chain diameters by approximately 5 A, so that a single polysulfone chain has an apparent diameter of 9-12 A in the transmission electron microscope. Poly(1-tetradecene sulfone) forms short helical regions that show irregular helical turns of pitch 7-18 A, two to eight turns …