Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Bioinformatics

Beyond Structural Genomics: Computational Approaches For The Identification Of Ligand Binding Sites In Protein Structures, Dario Ghersi, Roberto Sanchez Jul 2011

Beyond Structural Genomics: Computational Approaches For The Identification Of Ligand Binding Sites In Protein Structures, Dario Ghersi, Roberto Sanchez

Interdisciplinary Informatics Faculty Publications

t Structural genomics projects have revealed structures for a large number of proteins of unknown function. Understanding the interactions between these proteins and their ligands would provide an initial step in their functional characterization. Binding site identification methods are a fast and cost-effective way to facilitate the characterization of functionally important protein regions. In this review we describe our recently developed methods for binding site identification in the context of existing methods. The advantage of energy-based approaches is emphasized, since they provide flexibility in the identifi- cation and characterization of different types of binding sites


Systematic Assessment Of Accuracy Of Comparative Model Of Proteins Belonging To Different Structural Fold Classes, Subrata Chakrabarty, Dario Ghersi, Roberto Sanchez Feb 2011

Systematic Assessment Of Accuracy Of Comparative Model Of Proteins Belonging To Different Structural Fold Classes, Subrata Chakrabarty, Dario Ghersi, Roberto Sanchez

Interdisciplinary Informatics Faculty Publications

In the absence of experimental structures, comparative modeling continues to be the chosen method for retrieving structural information on target proteins. However, models lack the accuracy of experimental structures. Alignment error and structural divergence (between target and template) influence model accuracy the most. Here, we examine the potential additional impact of backbone geometry, as our previous studies have suggested that the structural class (all-α, αβ, all-β) of a protein may influence the accuracy of its model. In the twilight zone (sequence identity ≤ 30%) and at a similar level of target-template divergence, the accuracy of protein models does indeed follow …


Computer Simulations Of Heterologous Immunity: Highlights Of An Interdisciplinary Cooperation, Claudia Calcagno, Roberto Puzone, Yanthe E. Pearson, Yiming Cheng, Dario Ghersi, Liisa K. Selin, Raymond M. Welsh, Franco Celada Jan 2011

Computer Simulations Of Heterologous Immunity: Highlights Of An Interdisciplinary Cooperation, Claudia Calcagno, Roberto Puzone, Yanthe E. Pearson, Yiming Cheng, Dario Ghersi, Liisa K. Selin, Raymond M. Welsh, Franco Celada

Interdisciplinary Informatics Faculty Publications

The relationship between biological research and mathematical modeling is complex, critical, and vital. In this review, we summarize the results of the collaboration between two laboratories, exploring the interaction between mathematical modeling and wet-lab immunology. During this collaboration several aspects of the immune defence against viral infections were investigated, focusing primarily on the subject of heterologous immunity. In this manuscript, we emphasize the topics where computational simulations were applied in conjunction with experiments, such as immune attrition, the growing and shrinking of cross-reactive T cell repertoires following repeated infections, the short and long-term effects of cross-reactive immunological memory, and the …


A Parallel Graph Sampling Algorithm For Analyzing Gene Correlation Networks, Kathryn Dempsey Cooper, Kanimathi Duraisamy, Hesham Ali, Sanjukta Bhowmick Jan 2011

A Parallel Graph Sampling Algorithm For Analyzing Gene Correlation Networks, Kathryn Dempsey Cooper, Kanimathi Duraisamy, Hesham Ali, Sanjukta Bhowmick

Interdisciplinary Informatics Faculty Publications

Effcient analysis of complex networks is often a challenging task due to its large size and the noise inherent in the system. One popular method of overcoming this problem is through graph sampling, that is extracting a representative subgraph from the larger network. The accuracy of the sample is validated by comparing the combinatorial properties of the subgraph and the original network. However, there has been little study in comparing networks based on the applications that they represent. Furthermore, sampling methods are generally applied agnostically, without mapping to the requirements of the underlying analysis. In this paper,we introduce a parallel …