Open Access. Powered by Scholars. Published by Universities.®

Bioinformatics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Bioinformatics

Survival Analysis With Large Dimensional Covariates: An Application In Microarray Studies, David A. Engler, Yi Li Jul 2007

Survival Analysis With Large Dimensional Covariates: An Application In Microarray Studies, David A. Engler, Yi Li

Harvard University Biostatistics Working Paper Series

Use of microarray technology often leads to high-dimensional and low- sample size data settings. Over the past several years, a variety of novel approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptation of the elastic net approach is presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time …


The Time Invariance Principle, Ecological (Non)Chaos, And A Fundamental Pitfall Of Discrete Modeling, Bo Deng Mar 2007

The Time Invariance Principle, Ecological (Non)Chaos, And A Fundamental Pitfall Of Discrete Modeling, Bo Deng

Department of Mathematics: Faculty Publications

This paper is to show that most discrete models used for population dynamics in ecology are inherently pathological that their predications cannot be independently verified by experiments because they violate a fundamental principle of physics. The result is used to tackle an on-going controversy regarding ecological chaos. Another implication of the result is that all continuous dynamical systems must be modeled by differential equations. As a result it suggests that researches based on discrete modeling must be closely scrutinized and the teaching of calculus and differential equations must be emphasized for students of biology.


The Origin Of 2 Sexes Through Optimization Of Recombination Entropy Against Time And Energy, Bo Deng Jan 2007

The Origin Of 2 Sexes Through Optimization Of Recombination Entropy Against Time And Energy, Bo Deng

Department of Mathematics: Faculty Publications

Sexual reproduction in nature requires two sexes, which raises the question why the reproductive scheme did not evolve to have three or more sexes. Here we construct a constrained optimization model based on the communication theory to analyze trade-offs among reproductive schemes with arbitrary number of sexes. More sexes on one hand lead to higher reproductive diversity, but on the other hand incur greater cost in time and energy for reproductive success. Our model shows that the two-sexes reproduction scheme maximizes the recombination entropy-to-cost ratio, and hence is the optimal solution to the problem.