Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Protein Stability In Solution And In The Gas Phase., Yousef Haidar Sep 2023

Protein Stability In Solution And In The Gas Phase., Yousef Haidar

Electronic Thesis and Dissertation Repository

Electrospray Ionization mass spectrometry (ESI-MS) is widely used for probing proteins, yet many aspects of this technique remain elusive. Using MS, ion mobility spectrometry (IMS), and circular dichroism (CD) spectroscopy, this thesis sheds light on the stability differences of proteins in the gas phase and solution. After a general introduction (Chapter 1), Chapter 2 scrutinizes some aspects of native ESI. Our data highlight the significance of cone voltage in maintaining a native-like fold and show the advantage of using NH4Ac in protein experiments. Chapter 3 focuses on hydrogen/deuterium exchange (HDX)-MS. Several studies have reported that D2O …


Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii May 2022

Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii

All Dissertations

Proteins, RNA, and DNA serve as the primary sub-cellular machinery that give rise to the necessary functions of life. The long-standing paradigm has been that the structures of biomolecules, or the arrangement of the subunits that make up a biomolecule, determine biological function. However, biomolecules are not static objects. Instead, they often undergo structural rearrangements that are crucial to enabling and regulating their functions. In my thesis I present several studies of the interplay between the structures, dynamics, and functions of biomolecules that combine experimental fluorescence spectroscopy and computational methods to probe these systems at the single-molecule level. In particular, …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Investigations Of The Structure And Protein-Protein Interactions Of Chlamydia Trachomatis Scc4, Thilini Oshadhi Senarath Ukwaththage Mar 2021

Investigations Of The Structure And Protein-Protein Interactions Of Chlamydia Trachomatis Scc4, Thilini Oshadhi Senarath Ukwaththage

LSU Doctoral Dissertations

Chlamydia trachomatis (CT) is the most common, sexually transmitted bacterial disease (STD) in the world. In the developmental cycle of CT, specific chlamydia chaperone 4 (Scc4) is a unique protein with essential and multiple roles. Hence, Scc4 is significant as a virulence target for therapeutic approaches to treat chlamydial infections. A novel approach was discovered to purify tag free Scc4 by utilizing a 6X-histidine-tag on Scc1 in the co-expressed Scc4:Scc1 complex by capturing the complex on nickel-charged immobilized metal affinity chromatography resin, followed by dissociation of Scc4 with sarkosyl. Using triple resonance NMR experiments, backbone and sidechain resonances …


Degree Of Conservation Of Methionines Found To Be Oxidized In The Human Urinary Proteome, Alexis Hall Dec 2020

Degree Of Conservation Of Methionines Found To Be Oxidized In The Human Urinary Proteome, Alexis Hall

Graduate Theses and Dissertations

In previous work from this laboratory, methionine containing peptides from the human urinary proteome were examined by mass spectrometry for the degree of methionine oxidation to the sulfoxide form. While this demonstrated that many of the methionines detected were capable of being oxidized, the question of whether these methionines are important in the structure and/or function of the parent proteins came about. In some proteins, methionine oxidation has been linked to conformational changes and alteration of function and thus can serve as a mechanism for reversible regulation of activity. It is hypothesized that methionines which might serve a regulatory purpose …


Protein Footprinting: Auxiliary Engine To Power The Structural Biology Revolution, Mark R. Chance, Erik R. Farquhar, Sichun Yang, David T. Lodowski, Janna G. Kiselar Apr 2020

Protein Footprinting: Auxiliary Engine To Power The Structural Biology Revolution, Mark R. Chance, Erik R. Farquhar, Sichun Yang, David T. Lodowski, Janna G. Kiselar

Faculty Scholarship

Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins are determined regularly. These advances have been driven by over fifteen years of technology advancements, first in macromolecular crystallography, and recently in Cryo-electron microscopy. These structures are allowing detailed questions about functional mechanisms of the structures, and the biology enabled by these structures, to be addressed for the first time. At the same time, mass spectrometry technologies for protein structure analysis, “footprinting” studies, have improved their sensitivity and resolution dramatically and can provide detailed sub-peptide and residue level information for validating structures …


Purification, Optimization, And Growth Of New Delhi Metallo-Β-Lactamase-1 Protein Crystals Mixed With Nz218 Inhibitor, Brandon M. Wills May 2016

Purification, Optimization, And Growth Of New Delhi Metallo-Β-Lactamase-1 Protein Crystals Mixed With Nz218 Inhibitor, Brandon M. Wills

Celebration of Learning

New Delhi metallo-β-lactamase-1 is a problematic gene found in certain strains of bacteria that cause them to become antibiotic resistant to nearly all known antibiotics. While some antibiotics are available to treat patients with a bacterial infection, most are toxic or do not have 100% success rates. With that being said, it is imperative that we search for a molecule that is successfully able to inhibit the effects of this gene every time. Such a discovery would help tremendously with new antibiotic drug development and also prevent further damage by these dangerous bacteria. In this presentation, I will describe the …


The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto Mar 2016

The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto

Doctoral Dissertations

Thorough insight into a protein’s structure is necessary to understand how it functions and what goes wrong when it malfunctions. The structure of proteins, however, is not easily analyzed. The analysis must take place under a narrow range of conditions or risk perturbing the very structure being probed. Furthermore, the wide diversity in size and chemistry possible in proteins significantly complicates this analysis. Despite this numerous methods have been developed in order to analyze protein structure. In this work, we demonstrate that mass spectrometry (MS)-based techniques are capable of characterizing the structure of particularly challenging proteins. This is done through …


Utilizing Nmr Spectroscopy And Molecular Docking As Tools For The Structural Determination And Functional Annotation Of Proteins, Jaime Stark Feb 2013

Utilizing Nmr Spectroscopy And Molecular Docking As Tools For The Structural Determination And Functional Annotation Of Proteins, Jaime Stark

Department of Chemistry: Dissertations, Theses, and Student Research

With the completion of the Human Genome Project in 2001 and the subsequent explosion of organisms with sequenced genomes, we are now aware of nearly 28 million proteins. Determining the role of each of these proteins is essential to our understanding of biology and the development of medical advances. Unfortunately, the experimental approaches to determine protein function are too slow to investigate every protein. Bioinformatics approaches, such as sequence and structure homology, have helped to annotate the functions of many similar proteins. However, despite these computational approaches, approximately 40% of proteins still have no known function. Alleviating this deficit will …


Secondary Structure, A Missing Component Of Sequence- Based Minimotif Definitions, David P. Sargeant, Michael R. Gryk, Mark W. Maciejewsk, Vishal Thapar, Vamsi Kundeti, Sanguthevar Rajasekaran, Pedro Romero, Keith Dunker, Shun-Cheng Li, Tomonori Kaneko, Martin Schiller Dec 2012

Secondary Structure, A Missing Component Of Sequence- Based Minimotif Definitions, David P. Sargeant, Michael R. Gryk, Mark W. Maciejewsk, Vishal Thapar, Vamsi Kundeti, Sanguthevar Rajasekaran, Pedro Romero, Keith Dunker, Shun-Cheng Li, Tomonori Kaneko, Martin Schiller

Life Sciences Faculty Research

Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis …


Achieving High Accuracy Prediction Of Minimotifs, Tian Mi, Sanguthevar Rajasekaran, Jerlin Camilus Merlin, Michael R. Gryk, Martin Schiller Sep 2012

Achieving High Accuracy Prediction Of Minimotifs, Tian Mi, Sanguthevar Rajasekaran, Jerlin Camilus Merlin, Michael R. Gryk, Martin Schiller

Life Sciences Faculty Research

The low complexity of minimotif patterns results in a high false-positive prediction rate, hampering protein function prediction. A multi-filter algorithm, trained and tested on a linear regression model, support vector machine model, and neural network model, using a large dataset of verified minimotifs, vastly improves minimotif prediction accuracy while generating few false positives. An optimal threshold for the best accuracy reaches an overall accuracy above 90%, while a stringent threshold for the best specificity generates less than 1% false positives or even no false positives and still produces more than 90% true positives for the linear regression and neural network …