Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Apoptosis

Molecular and Cellular Biochemistry Faculty Publications

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Twist-Mediated Epithelial-Mesenchymal Transition Promotes Breast Tumor Cell Invasion Via Inhibition Of Hippo Pathway, Yifan Wang, Jingyi Liu, Xuhua Ying, Pengnian Charles Lin, Binhua P. Zhou Apr 2016

Twist-Mediated Epithelial-Mesenchymal Transition Promotes Breast Tumor Cell Invasion Via Inhibition Of Hippo Pathway, Yifan Wang, Jingyi Liu, Xuhua Ying, Pengnian Charles Lin, Binhua P. Zhou

Molecular and Cellular Biochemistry Faculty Publications

Twist is a key transcription factor for Epithelial-mesenchymal transition (EMT), which is a cellular de-differentiation program that promotes invasion and metastasis, confers tumor cells with cancer stem cell (CSC)-like characteristics, and increases therapeutic resistance. However, the mechanisms that facilitate the functions of Twist remain unclear. Here we report that Twist overexpression increased expression of PAR1, an upstream regulator of the Hippo pathway; PAR1 promotes invasion, migration, and CSC-like properties in breast cancer by activating the transcriptional co-activator TAZ. Our study indicates that Hippo pathway inhibition is required for the increased migratory and invasiveness ability of breast cancer cells in Twist-mediated …


Mtorc2 Is Required For Rit-Mediated Oxidative Stress Resistance, Weikang Cai, Douglas A. Andres Dec 2014

Mtorc2 Is Required For Rit-Mediated Oxidative Stress Resistance, Weikang Cai, Douglas A. Andres

Molecular and Cellular Biochemistry Faculty Publications

Rit, a member of the Ras family of GTPases, has been shown to promote cell survival in response to oxidative stress, in part by directing an evolutionarily conserved p38 MAPK-Akt survival cascade. Aberrant Rit signaling has recently been implicated as a driver mutation in human cancer, adding importance to the characterization of critical Rit effector pathways. However, the mechanism by which Rit-p38 signaling regulated Akt activity was unknown. Here, we identify mTORC2 as a critical downstream mediator of Rit-dependent survival signaling in response to reactive oxygen species (ROS) stress. Rit interacts with Sin1 (MAPKAP1), and Rit loss compromises ROS-dependent mTORC2 …


Prostate Cancer-Specific And Potent Antitumor Effect Of A Dd3-Controlled Oncolytic Virus Harboring The Pten Gene, Miao Ding, Xin Cao, Hai-Neng Xu, Jun-Kai Fan, Hong-Ling Huang, Dong-Qin Yang, Yu-Hua Li, Jian Wang, Runsheng Li, Xin-Yuan Liu Apr 2012

Prostate Cancer-Specific And Potent Antitumor Effect Of A Dd3-Controlled Oncolytic Virus Harboring The Pten Gene, Miao Ding, Xin Cao, Hai-Neng Xu, Jun-Kai Fan, Hong-Ling Huang, Dong-Qin Yang, Yu-Hua Li, Jian Wang, Runsheng Li, Xin-Yuan Liu

Molecular and Cellular Biochemistry Faculty Publications

Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN …