Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structural Basis For Clostridium Perfringens Enterotoxin Targeting Of Claudins At Tight Junctions In Mammalian Gut, Alex J. Vecchio, Sewwandi S. Rathnayake, Robert M. Stroud Apr 2021

Structural Basis For Clostridium Perfringens Enterotoxin Targeting Of Claudins At Tight Junctions In Mammalian Gut, Alex J. Vecchio, Sewwandi S. Rathnayake, Robert M. Stroud

Department of Biochemistry: Faculty Publications

The bacterium Clostridium perfringens causes severe, sometimes lethal gastrointestinal disorders in humans, including enteritis and enterotoxemia. Type F strains produce an enterotoxin (CpE) that causes the third most common foodborne illness in the United States. CpE induces gut breakdown by disrupting barriers at cell–cell contacts called tight junctions (TJs), which are formed and maintained by claudins. Targeted binding of CpE to specific claudins, encoded by its C-terminal domain (cCpE), loosens TJ barriers to trigger molecular leaks between cells. Cytotoxicity results from claudin-bound CpE complexes forming pores in cell membranes. In mammalian tissues, ∼24 claudins govern TJ barriers—but the basis for …


Structural Basis For Clostridium Perfringens Enterotoxin Targeting Of Claudins At Tight Junctions In Mammalian Gut, Alex J. Vecchio, Sewwandi S. Rathnayake, Robert M. Stroud Feb 2021

Structural Basis For Clostridium Perfringens Enterotoxin Targeting Of Claudins At Tight Junctions In Mammalian Gut, Alex J. Vecchio, Sewwandi S. Rathnayake, Robert M. Stroud

Department of Biochemistry: Faculty Publications

The bacterium Clostridium perfringens causes severe, sometimes lethal gastrointestinal disorders in humans, including enteritis and enterotoxemia. Type F strains produce an enterotoxin (CpE) that causes the third most common foodborne illness in the United States. CpE induces gut breakdown by disrupting barriers at cell–cell contacts called tight junctions (TJs), which are formed and maintained by claudins. Targeted binding of CpE to specific claudins, encoded by its C-terminal domain (cCpE), loosens TJ barriers to trigger molecular leaks between cells. Cytotoxicity results from claudin-bound CpE complexes forming pores in cell membranes. In mammalian tissues, 24 claudins govern TJ barriers—but the basis for …


On The Structure And Function Of Mitochondrial Uncoupling Proteins: The Case Of Ucp2, Afshan Ardalan Jan 2021

On The Structure And Function Of Mitochondrial Uncoupling Proteins: The Case Of Ucp2, Afshan Ardalan

Theses and Dissertations (Comprehensive)

Uncoupling proteins (UCPs) are regulated proton transporters of the mitochondrial inner membrane. UCP-mediated proton leak negatively impacts the rate of ATP synthesis. Despite the importance of their physiological role(s) in certain tissues, molecular aspects of UCPs’ structure-function relationships are not fully understood. The current study explores the tertiary and quaternary structure of UCP2, as well as its proton transport mechanism in lipid membranes. The proteins were expressed in the E. coli inner membrane, purified and reconstituted into liposomes. Proteins were characterized by semi-native SDS-PAGE. Circular dichroism spectroscopy (CD) and fluorescence quenching assays were utilized to study the conformation of proteins …