Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Expanding The Conservation Genomics Toolbox: Incorporating Structural Variants To Enhance Genomic Studies For Species Of Conservation Concern, Stephanie J. Galla Dec 2021

Expanding The Conservation Genomics Toolbox: Incorporating Structural Variants To Enhance Genomic Studies For Species Of Conservation Concern, Stephanie J. Galla

Biology Faculty Publications and Presentations

Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics …


Authentication Of A Novel Antibody To Zebrafish Collagen Type Xi Alpha 1 Chain (Col11a1a), Jonathon C. Reeck, Makenna J. Hardy, Xinzhu Pu, Cynthia Keller-Peck, Julia Thom Oxford Sep 2021

Authentication Of A Novel Antibody To Zebrafish Collagen Type Xi Alpha 1 Chain (Col11a1a), Jonathon C. Reeck, Makenna J. Hardy, Xinzhu Pu, Cynthia Keller-Peck, Julia Thom Oxford

Biology Faculty Publications and Presentations

Objective: Extracellular matrix proteins play important roles in embryonic development and antibodies that specifically detect these proteins are essential to understanding their function. The zebrafish embryo is a popular model for vertebrate development but suffers from a dearth of authenticated antibody reagents for research. Here, we describe a novel antibody designed to detect the minor fibrillar collagen chain Col11a1a in zebrafish (AB strain).

Results: The Col11a1a antibody was raised in rabbit against a peptide comprising a unique sequence within the zebrafish Col11a1a gene product. The antibody was affinity-purified and characterized by ELISA. The antibody is effective for immunoblot and immunohistochemistry …


Bioactive Recombinant Human Oncostatin M For Nmr-Based Screening In Drug Discovery, Olga A. Mass, Joseph Tuccinardi, Luke Woodbury, Cody L. Wolf, Bri Grantham, Kelsey Holdaway, Xinzhu Pu, Matthew D. King, Don L. Warner, Cheryl L. Jorcyk, Lisa R. Warner Aug 2021

Bioactive Recombinant Human Oncostatin M For Nmr-Based Screening In Drug Discovery, Olga A. Mass, Joseph Tuccinardi, Luke Woodbury, Cody L. Wolf, Bri Grantham, Kelsey Holdaway, Xinzhu Pu, Matthew D. King, Don L. Warner, Cheryl L. Jorcyk, Lisa R. Warner

Biomolecular Research Center Publications and Presentations

Oncostatin M (OSM) is a pleiotropic, interleukin-6 family inflammatory cytokine that plays an important role in inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer progression and metastasis. Recently, elevated OSM levels have been found in the serum of COVID-19 patients in intensive care units. Multiple anti-OSM therapeutics have been investigated, but to date no OSM small molecule inhibitors are clinically available. To pursue a high-throughput screening and structure-based drug discovery strategy to design a small molecule inhibitor of OSM, milligram quantities of highly pure, bioactive OSM are required. Here, we developed a reliable protocol to produce highly pure …


Data Management Tools To Measure The Impact Of Core Facilities, Diane B. Smith, Tracy L. Yarnell, Barbara J. Jibben, Linda E. Liou, Carolyn J. Hovde, Julia Thom Oxford Jul 2021

Data Management Tools To Measure The Impact Of Core Facilities, Diane B. Smith, Tracy L. Yarnell, Barbara J. Jibben, Linda E. Liou, Carolyn J. Hovde, Julia Thom Oxford

Biology Faculty Publications and Presentations

The Biomolecular Research Center at Boise State University is a research core facility that supports the study of biomolecules with an emphasis on protein structure and function, molecular interactions, and imaging. The mission of the core is to facilitate access to instrumentation that might otherwise be unavailable because of the cost, training for new users, and scientific staff with specialized skills to support early-stage investigators, as well as more established senior investigators. Data collection and management of users and their research output is essential to understand the impact of the center on the research environment and research productivity. However, challenges …


Rapid Production And Purification Of Dye-Loaded Liposomes By Electrodialysis-Driven Depletion, Gamid Abatchev, Andrew Bogard, Zoe Hutchinson, Jason Ward, Daniel Fologea Jun 2021

Rapid Production And Purification Of Dye-Loaded Liposomes By Electrodialysis-Driven Depletion, Gamid Abatchev, Andrew Bogard, Zoe Hutchinson, Jason Ward, Daniel Fologea

Physics Faculty Publications and Presentations

Liposomes are spherical-shaped vesicles that enclose an aqueous milieu surrounded by bilayer or multilayer membranes formed by self-assembly of lipid molecules. They are intensively exploited as either model membranes for fundamental studies or as vehicles for delivery of active substances in vivo and in vitro. Irrespective of the method adopted for production of loaded liposomes, obtaining the final purified product is often achieved by employing multiple, time consuming steps. To alleviate this problem, we propose a simplified approach for concomitant production and purification of loaded liposomes by exploiting the Electrodialysis-Driven Depletion of charged molecules from solutions. Our investigations show that …


Cholesterol And Cholesterol Bilayer Domains Inhibit Binding Of Alpha-Crystallin To The Membranes Made Of The Major Phospholipids Of Eye Lens Fiber Cell Plasma Membranes, Raju Timsina, Geraline Trossi-Torres, Matthew O'Dell, Nawal K. Khadka, Laxman Mainali May 2021

Cholesterol And Cholesterol Bilayer Domains Inhibit Binding Of Alpha-Crystallin To The Membranes Made Of The Major Phospholipids Of Eye Lens Fiber Cell Plasma Membranes, Raju Timsina, Geraline Trossi-Torres, Matthew O'Dell, Nawal K. Khadka, Laxman Mainali

Physics Faculty Publications and Presentations

The concentration of α-crystallin decreases in the eye lens cytoplasm, with a corresponding increase in membrane-bound α-crystallin during cataract formation. The eye lens’s fiber cell plasma membrane consists of extremely high cholesterol (Chol) content, forming cholesterol bilayer domains (CBDs) within the membrane. The role of high Chol content in the lens membrane is unclear. Here, we applied the continuous-wave electron paramagnetic resonance spin-labeling method to probe the role of Chol and CBDs on α-crystallin binding to membranes made of four major phospholipids (PLs) of the eye lens, i.e., phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Small unilamellar vesicles …


Liposomes Prevent In Vitro Hemolysis Induced By Streptolysin O And Lysenin, Marcelo Ayllon, Gamid Abatchev, Andrew Bogard, Rosey Whiting, Sarah E. Hobdey, Daniel Fologea May 2021

Liposomes Prevent In Vitro Hemolysis Induced By Streptolysin O And Lysenin, Marcelo Ayllon, Gamid Abatchev, Andrew Bogard, Rosey Whiting, Sarah E. Hobdey, Daniel Fologea

Physics Faculty Publications and Presentations

The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their …