Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2021

Other Biochemistry, Biophysics, and Structural Biology

Thlaspi arvense

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Crispr/Cas9-Induced Fad2 And Rod1 Mutations Stacked With Fae1 Confer High Oleic Acid Seed Oil In Pennycress (Thlaspi Arvense L.), Brice A. Jarvis, Trevor B. Romsdahl, Michaela G. Mcginn, Tara J. Nazarenus, Edgar B. Cahoon, Kent D. Chapman, John C. Sedbrook Apr 2021

Crispr/Cas9-Induced Fad2 And Rod1 Mutations Stacked With Fae1 Confer High Oleic Acid Seed Oil In Pennycress (Thlaspi Arvense L.), Brice A. Jarvis, Trevor B. Romsdahl, Michaela G. Mcginn, Tara J. Nazarenus, Edgar B. Cahoon, Kent D. Chapman, John C. Sedbrook

Department of Biochemistry: Faculty Publications

Pennycress (Thlaspi arvense L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses. Here, we utilized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to produce knockout mutations in the FATTY ACID DESATURASE2 (FAD2) and REDUCED OLEATE DESATURATION1 (ROD1) genes to increase oleic acid content. High oleic acid (18:1) oil is valued for its oxidative stability that is …


Generating Pennycress (Thlaspi Arvense) Seed Triacylglycerols And Acetyl-Triacylglycerols Containing Medium-Chain Fatty Acids, Maliheh Esfahanian, Tara J. Nazarenus, Meghan M. Freund, Gary Mcintosh, Winthrop B. Phippen, Mary E. Phippen, Timothy P. Durrett, Edgar B. Cahoon, John C. Sedbrook Jan 2021

Generating Pennycress (Thlaspi Arvense) Seed Triacylglycerols And Acetyl-Triacylglycerols Containing Medium-Chain Fatty Acids, Maliheh Esfahanian, Tara J. Nazarenus, Meghan M. Freund, Gary Mcintosh, Winthrop B. Phippen, Mary E. Phippen, Timothy P. Durrett, Edgar B. Cahoon, John C. Sedbrook

Department of Biochemistry: Faculty Publications

Thlaspi arvense L. (pennycress) is a cold-tolerant Brassicaceae that produces large amounts of seeds rich in triacylglycerols and protein, making it an attractive target for domestication into an offseason oilseed cash cover crop. Pennycress is easily genetically transformed, enabling synthetic biology approaches to tailor oil properties for specific biofuel and industrial applications. To test the feasibility in pennycress of producing TAGs and acetyl-TAGs rich in medium-chain fatty acids (MCFAs; C6–C14) for industrial, biojet fuel and improved biodiesel applications, we generated transgenic lines with seed-specific expression of unique acyltransferase (LPAT and diacylglycerol acyltransferase) genes and thioesterase (FatB) genes isolated from Cuphea …