Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse Aug 2021

The Regulation Of Plasmodium Falciparum Metabolism By Haloacid Dehalogenase Proteins, Philip Frasse

Arts & Sciences Electronic Theses and Dissertations

Malaria is an enormous financial and public health burden for much of the world, infecting over 200 million and killing over 400,000 people every year. While much progress has been made combating malaria in the past few decades, those advances have slowed in recent years, partially due to the emergence of resistance to all known antimalarials used to date. To achieve the goal of eliminating malaria as a major global health problem, new therapeutics need to be developed, targeting novel categories of parasite biology. One poorly understood area of parasite biology is the regulation of various metabolic pathways. We have …


Copper-Mediated Regulation Of A Traditional Iron Uptake System In Uropathogenic Escherichia Coli., George Lwanga Katumba Aug 2021

Copper-Mediated Regulation Of A Traditional Iron Uptake System In Uropathogenic Escherichia Coli., George Lwanga Katumba

Arts & Sciences Electronic Theses and Dissertations

Transition metals constitute an important part of the host-pathogen interface. Iron is an essential nutrient that functions as a cofactor for numerous bacterial and host proteins, as either a ligand for oxygen in carrier proteins or an enzyme catalytic site due to its natural redox properties. As part of the innate immune response, infected hosts sequester iron from pathogens to limit their growth, a phenomenon known as nutritional immunity. On the other hand, copper ions are deployed at infection sites as a potent antimicrobial agent to kill bacteria. The ability to survive within multiple, often harsh, microenvironments is fundamental to …


Prodrug Activation In Staphylococci And The Implications For Antimicrobial Development, Justin J. Miller Jan 2021

Prodrug Activation In Staphylococci And The Implications For Antimicrobial Development, Justin J. Miller

Arts & Sciences Electronic Theses and Dissertations

Antibiotic resistance is an increasing concern for global health care, with some estimates suggesting that 10 million people will die from antibiotic resistant infections in the year 2050. Fueling this prospect, few antimicrobials are being actively developed and recently commercial entities have fled from the development of new anti-infectives. New antimicrobials and drug development strategies are urgently needed to revitalize this critical pipeline. While many putative antibiotics demonstrate promising in vitro potency, they routinely fail in vivo due to poor drug-like properties (e.g. oral bioavailability, serum-half life, toxicity) resulting in overly expensive drug development pipelines. Fortunately, drug-like properties can be …


Understanding The Molecular Mechanisms Of Photoferrotrophy And Phototrophic Extracellular Electron Uptake, Dinesh Gupta Jan 2021

Understanding The Molecular Mechanisms Of Photoferrotrophy And Phototrophic Extracellular Electron Uptake, Dinesh Gupta

Arts & Sciences Electronic Theses and Dissertations

Several anoxygenic phototrophs grow by utilizing soluble iron or insoluble mixed-valence iron minerals (such as rust) as electron donors to fix carbon dioxide using light energy, a process called photoferrotrophy. Photoferrotrophs can also use electron donors such as poised electrodes that serve as proxies for rust via phototrophic extracellular electron uptake (EEU). Despite the recognition that these two related microbial processes contribute to various biogeochemical cycles such as iron and carbon, the electron uptake mechanisms underlying photoferrotrophy and phototrophic EEU are poorly understood. To address the key knowledge gaps in our understanding of these microbial metabolisms, here we characterized Rhodopseudomonas …