Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Epigenetics

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 43

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Migratory Material: Epigenetics & Weaving At The Us-Mexico Border, Valerie Navarrete May 2023

Migratory Material: Epigenetics & Weaving At The Us-Mexico Border, Valerie Navarrete

Masters Theses

Discourse often sutures the body shut, disallowing representations of identity to outgrow sociopolitical interests. This issue may originate from borders, but also from the unnamable pathology that generational colonial trauma transmits to the mind, body, and environment. Without a direct form of translatability, this thesis proposes a new materialism that deviates from any object-oriented ontology. Untethered and intra-active, epigenetics and weaving represent objects that transform typical ways of knowing and seeing. Their sensitivity to the environment, in addition to their mobility across generations of time, broaden the spatiotemporal loci of the body and its embodiment. Proposing new materials that expand …


New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang May 2023

New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang

All Dissertations

Uracil-DNA glycosylase (UDG) superfamily, which consists of several groups of enzymes that recognize the damaged DNA bases and initiate the base excision repair (BER) pathway, is most important in dealing with DNA deamination and other base modifications. Thymine DNA glycosylase (TDG), which belongs to family 2 in the UDG superfamily, is able to specifically recognize and cleave the 5-methylcytosine (mC) oxidative derivatives including 5-formylcytosine (fC), 5-carboxylcytosine (caC), 5-hydromethyluracil (hmU) caused by active demethylation or DNA damage. My dissertation work is mainly focused on the fC and caC glycosylase activity within UDG superfamily. Chapter 1 is a general introduction to the …


Characterizing The Dynamic Localization Of Cmi In Early Drosophila Development, Asra Habibullah Jan 2023

Characterizing The Dynamic Localization Of Cmi In Early Drosophila Development, Asra Habibullah

Master's Theses

The COMPASS-like family of lysine methyltransferases, MLR/MLX complexes, are epigenetic regulators that are essential for normal development through the methylation of the fourth lysine residue on histone 3 (H3K4), a universal epigenetic mark associated with active transcription. This family of complexes is highly conserved from yeast to mammals and the genes encoding the human MLR complexes have been associated with various developmental diseases and cancers (Dingwall and Fagan, 2019). In D. melanogaster, the enzymatic methyltransferase core of this complex is composed of two proteins: Cara Mitad (Cmi, also known as Lpt) and Trithorax-related (Trr). Although these proteins have been shown …


Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson Jan 2023

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson

Electronic Theses and Dissertations

Epigenetics is the study of molecular modification of a genome without changing its base pairs. The most studied type of epigenetic mechanism is DNA methylation, which is capable of turning a gene “on” or “off.” Epigenetic potential is the capacity to which an individual can have methylation on its genome. The more CpGs available, the greater the epigenetic potential. In invasive species, genetic variation has been observed to be paradoxical: not much of it exists on a genomic level, but epigenetically, phenotypic variation can occur. The focus on shift in gene expression in this study is on Toll-Like Receptor 4 …


Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo Sep 2022

Prenatal Choline Supplementation During Maternal Obesity Alters Offspring Response To Western Diets, Hunter W. Korsmo

Dissertations, Theses, and Capstone Projects

Maternal obesity has led to an increase in adverse offspring developmental outcomes and a greater risk for long-term metabolic diseases. Choline, a semi-essential nutrient, can be incorporated into phosphatidylcholine (PC) as well as sphingomyelin (SM) and donate its labile methyl group for the remethylation of homocysteine after choline is oxidized to betaine. Prenatal choline insufficiency has been related to maternal obesity and metabolic diseases, such as metabolic associated fatty liver disease (MAFLD). Choline may interact with maternal obesity to influence the programming offspring.

Chapter 1 presents an introduction of choline and the various clinical outcomes associated with choline supplementation during …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …


Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van May 2022

Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van

Dissertations & Theses (Open Access)

Plant Homeodomain Finger Protein 20 (PHF20) and its homolog PHF20 Like 1 (PHF20L1) are known subunits of the Non-Specific Lethal (NSL) complex, which acetylates lysine residues on histone H4 and regulates gene expression. The current model assumes that PHF20 and PHF20L1 are present together in the NSL complex, although it has never been tested. Performing extensive biochemical analysis, we observed that PHF20 and PHF20L1 were exclusively and independently associated with the NSL complex. Our protein domain analysis showed that the C-termini of PHF20 and PHF20L1 are crucial for their interactions with the respective complexes. Furthermore, enrichment sites of PHF20 and …


Histone Post-Translational Modification Dysregulation Contributes To Toxicity In Amyotrophic Lateral Sclerosis Proteinopathy Models, Seth A. Bennett Feb 2022

Histone Post-Translational Modification Dysregulation Contributes To Toxicity In Amyotrophic Lateral Sclerosis Proteinopathy Models, Seth A. Bennett

Dissertations, Theses, and Capstone Projects

Amyotrophic Lateral Sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence. Histone modifications, a main epigenetic mechanism, occur in many amino acid residues and include phosphorylation, acetylation, methylation as well as …


Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula Aug 2021

Unveiling Global Roles Of G-Quadruplexes And G4-22 In Human Genetics, Ruth Barros De Paula

Dissertations & Theses (Open Access)

G-quadruplexes are non-B DNA structures formed by four or more runs of repeated guanines that confer unique features to living organism’s genomes. These sequences are enriched in regulatory regions, such as promoters and 5’ UTRs, and have distinct regulatory roles in both health and disease states. Even though previous studies showed the impact of G4 in gene expression, none of them summarized the location-specific effect of G4. Also, there is no broad understanding about the most common G4 repeat in the human genome, named here as G4-22, and how it links to the evolution of mammals and their biology. In …


Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen May 2021

Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen

Dissertations & Theses (Open Access)

Post-translational modifications (PTMs) drive signal transduction by interacting with "reader" proteins. Protein domain microarray is a high throughput platform to identify novel readers for PTMs. In this dissertation, I applied two protein domain microarrays identifying novel readers for histone H2Aub1 and H2Bub1, and H3TM K4me3. Ubiquitinations of histone H2A at K119 (H2Aub1) and histone H2B at K120 (H2Bub1) function in distinct transcription regulation and DNA damage repair pathways, likely mediated by specific "reader" proteins. There are only two H2Aub1-specific readers identified and no known H2Bub1-specific readers. Using a ubiquitin-binding domain microarray, I discovered the phospholipase A2-activating protein (PLAA) PFU domain …


Initial And Advanced Stages Of Microbiota Establishment Within The Tsetse Fly, Miguel Eduardo Medina Munoz Jan 2021

Initial And Advanced Stages Of Microbiota Establishment Within The Tsetse Fly, Miguel Eduardo Medina Munoz

Graduate Theses, Dissertations, and Problem Reports

Symbiosis is a long-term physical association between two or more species, although little is known regarding its evolutionary origins, particularly at the genetic level. Tsetse flies are the vector of African trypanosomes, causative agents of Human and Animal African Trypanosomiases. Tsetse provide an ideal model for studying initial and advanced stages of symbiosis. Tsetse have a simple digestive tract microbiota primarily consisting of two bacteria; the ancient mutualist Wigglesworthia glossinidia and the recently acquired Sodalis glossinidius. This work presents a chronological study in evolutionary terms of the history of a microbial-insect association. First, I present concepts on symbiosis and …


Discrimination Of Monozygotic Twins Using Dna Methylation Levels Of One Cpg Site At Chromosome 3, Dino O. Robinson May 2020

Discrimination Of Monozygotic Twins Using Dna Methylation Levels Of One Cpg Site At Chromosome 3, Dino O. Robinson

Student Theses

Conventional STR typing, commonly used in forensics for human identification, poses a problem in criminal cases and paternity disputes involving monozygotic (MZ) twins because they share identical DNA sequences. To date, no routine method is available in forensics to differentiate between individuals of MZ pairs. Recently, epigenetic methods measuring differential DNA methylation patterns have been applied to MZ twin differentiation. In this study, we investigated the potential to identify MZ twins using a previously identified DNA methylation site in chromosome 3, cg18562578, in a sample of 129 MZ and 37 dizygotic (DZ) twin pairs. We used bisulfite converted saliva DNA …


Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang Aug 2019

Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang

Theses and Dissertations

The cardiac outflow tract (OFT) is a transient conduit that connects the embryonic heart chambers to the vascular network. Transcription factor Osr1 promotes the proliferation and cell cycle progression of second heart field (SHF), an essential cell population that contribute to the developing OFT. In this study, we investigated the role of Osr1 in OFT development on cellular and molecular levels using a systems biology approach. We observed OFT rotation and elongation defects, as well as double-outlet right ventricle and overriding aorta as a result of SHF-specific deletion of Osr1. Using genetic inducible fate mapping, we showed that Osr1-expressing SHF …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Advanced Proteomic And Epigenetic Characterization Of Ethanol-Induced Microglial Activation, Jennifer Guergues Guergues Mar 2019

Advanced Proteomic And Epigenetic Characterization Of Ethanol-Induced Microglial Activation, Jennifer Guergues Guergues

USF Tampa Graduate Theses and Dissertations

Microglia, the resident immune cells of the brain, can exhibit a broad range of activation phenotypes and have been implicated in several diseases and disorders of the central nervous system. Here, we described a method optimized for sensitive and rapid quantitative proteomic analysis of microglia that involves suspension trapping (S-Trap) for efficient and reproducible protein extraction from a microglial cell count expected from an individual mouse brain (~300K) while also simultaneously providing the first comprehensive proteomic characterization of a novel adult-derived mouse microglial cell line. This enhanced method was used throughout all subsequent works and was especially necessary when we …


Investigating The Role Of The Chromosome 19 Microrna Cluster In Human Trophoblast Differentiation And Infantile Hemangioma, Ezinne Francess Mong Mar 2019

Investigating The Role Of The Chromosome 19 Microrna Cluster In Human Trophoblast Differentiation And Infantile Hemangioma, Ezinne Francess Mong

USF Tampa Graduate Theses and Dissertations

Trophoblast differentiation and invasion is essential for normal implantation and establishment of the maternal-fetal interface, which allows for proper nutrient exchange and support of the fetus. For this to occur, cytotrophoblasts must undergo an epithelial to mesenchymal transition and differentiate into migratory and invasive extravillous trophoblasts (EVTs) that invade the maternal decidua and myometrium. Trophoblast differentiation, migration and invasion is highly regulated by a complex network of signaling pathways, adhesion molecules and transcription factors and is important for the remodeling of maternal spiral arteries from low flow, high resistance to high flow, low resistance vessels to allow optimal perfusion of …


Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang Feb 2019

Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang

Dissertations, Theses, and Capstone Projects

Interactions between proteins play a key role in nearly all cellular process, and therefore, disruption of such interactions may lead to many different types of cellular dysfunctions. Hence, pathologic protein-protein interactions (PPIs) constitute highly attractive drug targets and hold great potential for developing novel therapeutic agents for the treatment of incurable human diseases. Unfortunately, the identification of PPI inhibitors is an extremely challenging task, since traditionally used small molecule ligands are mostly unable to cover and anchor on the extensive flat surfaces that define those binary protein complexes. In contrast, large biomolecules such as proteins or peptides are ideal fits …


The Role Of H3k4 Methyltransferases In Drosophila Memory, Nicholas Raun Jan 2019

The Role Of H3k4 Methyltransferases In Drosophila Memory, Nicholas Raun

Electronic Thesis and Dissertation Repository

Gene transcription required for long-term memory requires the modification of histones. However, there are still many uncertainties about the identity and spatial expression of genes regulated by histone modifications during memory related processes. In this project I examined the role of Drosophila melanogaster methyltransferases Set1 and trx in courtship memory. Genetic knockdown of Set1 and trx in the mushroom body (MB) revealed that Set1 was necessary for short- and long-term memory, while trx was only required for long-term memory. Transcriptional profiling of MBs following trx-knockdown revealed expression changes in MB-enriched genes and genes involved in RNA processing. Among the …


Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue Dec 2018

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue

Dissertations & Theses (Open Access)

Transcription is strictly regulated by numerous factors including transcription coactivators. The p300 protein and its close paralogue CREB-binding protein (CREBBP, aka CBP) are well-known transcriptional coactivators that have intrinsic lysine acetyltransferase activity. The functions of p300/CBP largely rely on their capabilities to bind to chromatin and to acetylate the histone substrates. However, the molecular mechanisms underlying the regulation of these processes are not fully understood.

Through combination of various biochemical, biophysical and molecular approaches, we show that the ZZ-type zinc finger (ZZ) domain of p300 functions as a histone reader that specifically binds the N-terminal tail of histone H3. Crystal …


Genetic And Epigenetic Investigations On Pulmonary Hypertension Syndrome In Meat Type- Chickens, Khaloud Alzahrani Dec 2018

Genetic And Epigenetic Investigations On Pulmonary Hypertension Syndrome In Meat Type- Chickens, Khaloud Alzahrani

Graduate Theses and Dissertations

This dissertation presents a collection of studies that investigate the genetic and epigenetic associations to ascites phenotype in broiler chickens. Ascites is a significant metabolic disease associated with fast-growing meat-type chickens (broilers) and is a terminal result of pulmonary hypertension syndrome PHS. It is a multi-factorial syndrome caused by interactions between genetic, physiological, environmental, and managemental factors. It was estimated that ascites accounts for losses of about US$1 billion annually worldwide and for over 25% of broilers mortality. Although traditional and molecular genetic methods in the selection and in performance improvements, has greatly reduced ascites frequency, yet it has not …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …


Investigation Of Alcohol-Induced Changes In Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics, Crystina Leah Kriss Apr 2018

Investigation Of Alcohol-Induced Changes In Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics, Crystina Leah Kriss

USF Tampa Graduate Theses and Dissertations

Alcohol liver disease (ALD) is a major health concern throughout the world. Currently, in the United States, 17 million people suffer from alcoholism, of which 1.4 million people are receiving treatment [1, 2]. The link between ethanol metabolism, reactive oxygen species (ROS) and liver injury in ALD has been well characterized over the last couple decades [3-10]. Ethanol metabolism relies on the availability of the cofactor NAD+ for the oxidation of ethanol into acetate, consequently causing alterations in redox potential. Redox dysfunction within the mitochondria can affect multiple pathways important in maintaining cellular homeostasis. Chapter 1 provides an introduction to …


Characterizing The Requirement Of The Cmi/Trr Compass-Like Complex During Drosophila Development, Timothy Nickels Jan 2018

Characterizing The Requirement Of The Cmi/Trr Compass-Like Complex During Drosophila Development, Timothy Nickels

Master's Theses

The MLR family of COMPASS-like complexes are histone methyltransferase complexes that are associated with the activation of gene enhancers. In D. melanogaster, Cara mitad (Cmi, also known as Lpt) and Trithorax related (Trr) are central subunits of a complex orthologous to mammalian Lysine methyltransferase 2 C and D (KMT2C and KMT2D, also known as MLL3 and MLL2/4) that catalyze H3K4 monomethylation. Previous studies have demonstrated that mutations in these genes are associated with cancer and developmental disorders, but the mechanisms by which these alterations contribute to disease states are unknown. The Cmi-containing COMPASS-like complex and orthologous vertebrate complexes have been …


Designing Epigenome Editing Tools To Understand The Functional Role Of Dna Methylation Changes In Cancer, James Mcdonald Aug 2017

Designing Epigenome Editing Tools To Understand The Functional Role Of Dna Methylation Changes In Cancer, James Mcdonald

Arts & Sciences Electronic Theses and Dissertations

DNA methylation is known to silence gene expression in the context of imprinting, X-chromosome inactivation, and retrotransposon silencing. However, the role of DNA methylation in silencing gene expression outside of these contexts is not fully understood. This is especially true in diseases such as cancer, where normal DNA methylation patterns are significantly altered. In breast cancer as well as nearly all cancer types, most of the genome loses DNA methylation while small regions of the genome gain methylation. DNA methylation generally correlates with decreased gene expression when present at a gene promoter. Therefore, these regions of hypo- and hyper-methylation may …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …


Cytosolic Acetyl-Coa Promotes Histone H3 Lysine 27 Acetylation In Arabidopsis, Chen Chen Feb 2017

Cytosolic Acetyl-Coa Promotes Histone H3 Lysine 27 Acetylation In Arabidopsis, Chen Chen

Electronic Thesis and Dissertation Repository

Acetyl-coenzyme A (acetyl-CoA) serves as a central metabolite in energy metabolism and biosynthesis. High level of acetyl-CoA can fuel the tricarboxylic acid (TCA) cycle to generate energy and store excess energy in fatty acids. Meanwhile, it also provides acetyl groups for protein acetylation, which normally occurs at the lysine or arginine residues. Acetylation regulates protein functions largely due to the change of total charges. Acetylation of histones, for example, can lead to loss of the interaction between histone and DNA, thus relaxing chromatin structure and potentially promoting gene expression. However, whether and how acetyl-CoA regulates plant chromatin remains unexplored. Here, …


Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan Jan 2017

Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan

Theses and Dissertations

DNA methylation is necessary for learning, memory consolidation and has been implicated in a number of neuropsychiatric disorders. Obtaining high quality and comprehensive data for the three common forms of methylation in brain is challenging for methylome-wide association studies (MWAS). To address this we optimized a panel of enrichment methods for screening the brain methylome. Results show that these enrichment techniques approach the coverage and fidelity of the current gold standard bisulfite based techniques. Our MBD-based method can also be used with low amounts of genomic material from limited human biomaterials. Psychiatric disorders have high prevalence and are often chronic …


Epigenetic Characterization Of Human Retina Cells, Nicholas R. Dunham May 2016

Epigenetic Characterization Of Human Retina Cells, Nicholas R. Dunham

Senior Honors Projects, 2010-2019

DNA methylation is an epigenetic modifier that modulates gene expression in plant and vertebrate genomes. The aim of this study was to characterize the role of DNA methylation in the human retina, particularly within rod and cone photoreceptor retinal neurons. Previous studies investigating DNA methylation in murine retinal cells and retina-derived human retinoblastoma immortalized cell culture lines demonstrate an inverse relationship between DNA methylation and transcriptional activity. Here, we used gene-specific bisulfite pyrosequencing analysis to measure DNA methylation in the genomes of human ocular cells in an effort to characterize the role of this important epigenetic modifier. These results can …


Preeclampsia: The Roles Of Acute Inflammation And Intrauterine Stress, Nicholas Parchim May 2016

Preeclampsia: The Roles Of Acute Inflammation And Intrauterine Stress, Nicholas Parchim

Dissertations & Theses (Open Access)

Preeclampsia (PE) is a severe, acute disease of pregnancy affecting approximately 8% of pregnant women after week 20 of gestation. PE is characterized by hypertension and renal damage reflected by proteinuria and has significant morbidity to both mother and fetus. Maternal symptoms range from headaches, nausea, edema, to visual changes, but once maternal symptoms present, damage to the fetus has begun. Mothers who progress untreated through the disease can also experience a condition called eclampsia characterized by seizure, coma, and, ultimately, death. PE-affected newborns experience features similar to prematurity—abnormal lung and renal development, intrauterine growth retardation (IUGR), and, possibly, fetal …


An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu Jan 2016

An Analysis Of The Interaction Between Sin3 And Methionine Metabolism In Drosophila, Mengying Liu

Wayne State University Dissertations

Chromatin modification and cellular metabolism are tightly connected. The mechanism for this cross-talk, however, remains incompletely understood. SIN3 controls histone acetylation through association with the histone deacetylase RPD3. In this study, my major goal is to explore the mechanism of how SIN3 regulates cellular metabolism.

Methionine metabolism generates the major methyl donor S-adenosylmethionine (SAM) for histone methylation. In collaboration with others, I report that reduced levels of some enzymes involved in methionine metabolism and histone demethylases lead to lethality, as well as wing development and cell proliferation defects in Drosophila melanogaster. Additionally, disruption of methionine metabolism can directly affect histone …