Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius Apr 2017

Enhancement Of Reactive Oxygen Species Production And Chlamydial Infection By The Mitochondrial Nod-Like Family Member Nlrx1, Ali A. Abdul-Sater, Najwene Saïd-Sadier, Verissa M. Lam, Bhavni Singh, Matthew A. Pettengill, Fraser Soares, Ivan Tattoli, Simone Lipinski, Stephen E. Girardin, Philip Rosenstiel, David M. Ojcius

David M. Ojcius

Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the …


Molecular Characterization Of A Isoenzyme Of The Targeting Peptide Degrading Protease, Prep2- Catalysis, Subcellular Localization, Expression And Evolution, S. Bhushan, A. Stahl, S. Nilsson, B. Lefebvre, D. Mcwilliams, S.J. Wright, M. Seki, D.A. Liberles, K. Shinozaki, Barry D. Bruce, M. Boutry, E. Glaser Jan 2005

Molecular Characterization Of A Isoenzyme Of The Targeting Peptide Degrading Protease, Prep2- Catalysis, Subcellular Localization, Expression And Evolution, S. Bhushan, A. Stahl, S. Nilsson, B. Lefebvre, D. Mcwilliams, S.J. Wright, M. Seki, D.A. Liberles, K. Shinozaki, Barry D. Bruce, M. Boutry, E. Glaser

Barry D. Bruce

We have previously identified a zinc metalloprotease involved in the degradation of mitochondrial and chloroplast targeting peptides, the presequence protease (PreP). In the Arabidopsis thaliana genomic database, there are two genes that correspond to the protease, the zinc metalloprotease (AAL90904) and the putative zinc metalloprotease (AAG13049). We have named the corresponding proteins AtPreP1 and AtPreP2, respectively. AtPreP1 and AtPreP2 show significant differences in their targeting peptides and the proteins are predicted to be localized in different compartments. AtPreP1 was shown to degrade both mitochondrial and chloroplast targeting peptides and to be dual targeted to both organelles using an ambiguous targeting …