Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia Jan 2020

Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia

Wayne State University Dissertations

Rat1 is a 5′→3′ exoribonuclease in budding yeast belonging to the XRN-family of nucleases. It is a highly conserved protein with homologs being present in fission yeast, flies, worms, mice and humans. Rat1 and its homolog in metazoan have been shown to function in multiple facets of RNA metabolism. In this study, we report a novel role of Rat1 in splicing of pre-mRNA in budding yeast. In the absence of the functional Rat1 in the nucleus, an increase in the level of unspliced transcripts was observed in yeast cells. Strand-specific TRO analysis revealed that the accumulation of unspliced transcripts upon …


Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage Jan 2019

Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage

Wayne State University Dissertations

With the discovery of cisplatin in the 1960s, it has been widely studied as a precursor for anticancer drug development. Despite its effectiveness against certain cancers, clinical usage of cisplatin is restricted by a number of side effects and resistance. In the past decade, scientists have been exploring biologically important ligands such as sugar derivatives in the hope of overcoming such challenges. Attachment of a sugar moiety could facilitate lower accumulation of platinum drugs in the body as well as enhance cellular uptake. In this study, a carbohydrate-linked cisplatin analog, cis-dichlorido[(2-β-D-glucopyranosidyl)propane-1,3-diammine]platinum (5) has been studied. The aim was to evaluate …


Defining The Effect Of Environmental Perturbation On The Male Germline, Molly Estill Jan 2019

Defining The Effect Of Environmental Perturbation On The Male Germline, Molly Estill

Wayne State University Dissertations

Periconceptional environment, according to the Developmental Origins of Health and Disease (DOHaD) theory, influences offspring phenotype, primarily via epigenetic mechanisms. Although the paternal component in humans is poorly understood, both maternal and paternal peri-conceptional environment are now believed to contribute to this phenomenon. Manipulation of the early embryo for treating human infertility, is suspected of contributing to offspring abnormalities through epigenetic mechanisms. To directly address the effects of common assisted reproductive technology procedures on the offspring epigenome, the DNA methylation profiles of newborns conceived naturally, or through the use of intrauterine insemination (IUI), or in vitro fertilization (IVF) using Fresh …


The Development Of Peptide Ligands To Target H69 Rrna, Danielle Nicole Dremann Jan 2016

The Development Of Peptide Ligands To Target H69 Rrna, Danielle Nicole Dremann

Wayne State University Dissertations

ABSTRACT

THE DEVELOPMENT OF PEPTIDE LIGANDS TO TARGET H69

by

DANIELLE NICOLE DREMANN

December 2015

Advisor: Prof. Christine S. Chow

Major: Chemistry (Biochemistry)

Degree: Doctor of Philosophy

In the development of peptide ligands to target H69, SPPS and ESI MS was used to determine if 1) peptides could bind to modified H69 and 2) if increased affinity for the target RNA could be enhanced with modification. An alanine and arginine scan was synthesized and tested for this determination. Selected peptides were then tested using biophysical techniques such as circular dichroism and isothermal titration calorimetry. An assay was also designed to …


Platination Kinetics: Insight Into Rna-Cisplatin Interactions As A Probe For Rna Microenvironments, Gayani Dedduwa-Mudalige Jan 2015

Platination Kinetics: Insight Into Rna-Cisplatin Interactions As A Probe For Rna Microenvironments, Gayani Dedduwa-Mudalige

Wayne State University Dissertations

RNAs are crucial for many cellular functions. Thus, studying ligand-RNA interactions and their dynamics in response to changes in the surrounding environment is important. In spite of the well-known DNA coordination, current research also indicates cisplatin binding to RNA. Kinetic studies of rRNA platination reactions are largely unexplored. This research was conducted to achieve two objectives. First, a broad kinetic study was carried out to investigate the cisplatin-rRNA interactions. The structure, function, and ligand interactions depend on RNA microenvironments. Second, the application of platination kinetics as a tool to interrogate RNA electrostatic environments was explored.

Three model rRNA hairpins from …


Towards A Unified Model Of Sperm Chromatin Structure, Graham Johnson Jan 2015

Towards A Unified Model Of Sperm Chromatin Structure, Graham Johnson

Wayne State University Dissertations

Sperm possess several layers of information that are delivered to the oocyte alongside the paternal DNA. Examples of potential sperm borne molecular cues of probable use to the embryo include RNAs and local and global chromatin structure. To identify candidate sperm RNAs that likely reach the oocyte cytoplasm following fertilization patterns of transcript compartmentalization in the mature gamete were identified. Though all sperm RNAs exhibited a preferential peripheral enrichment, a subset of RNAs were identified in which this trend was reduced. These RNAs are thought to be embedded with perinuclear theca and are correlated with late spermatogenic transcription. Malat1, a …


Artificial And Natural Nucleic Acid Self Assembling Systems, Marcus Wood Jan 2011

Artificial And Natural Nucleic Acid Self Assembling Systems, Marcus Wood

Wayne State University Dissertations

Nucleic acids are good candidates for nanomachine construction. They participate in all the processes of life, and so can function as structural building blocks and dynamic catalysts. However, to use nucleic acids as nanomachines, a better understanding of their material properties, how to design structures using them, and their dynamics is needed. We have tried to address these issues, in a small way, with nucleic acid force field development, an attempt at nanostructural design and synthesis using DNA, and a study of the RNA/protein regulatory dynamics of the tryptophan regulatory attenuation protein.