Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Role Of The Arginine Methyltransferase Carm1 In Global Transcriptional Regulation., Niamh Coughlan Apr 2014

The Role Of The Arginine Methyltransferase Carm1 In Global Transcriptional Regulation., Niamh Coughlan

Electronic Thesis and Dissertation Repository

Arginine methylation is a prevalent post-translational modification that is found on many nuclear and cytoplasmic proteins, and has been implicated in the regulation of gene expression. CARM1 is a member of the protein arginine methyltransferase (PRMT) family of proteins, and is a key protein responsible for arginine methylation of a subset of proteins involved in transcription. In this thesis I examine some of the mechanisms through which CARM1 contributes to global transcriptional regulation.

Using a ChIP-DSL approach, we show that the p/CIP/CARM1 complex is recruited to 204 proximal promoters following 17β-estradiol (E2) treatment in MCF-7 cells. Many of the target …


Sirna Targeting Of Thymidylate Synthase, Thymidine Kinase 1 And Thymidine Kinase 2 As An Anticancer Therapy: A Combinatorial Rnai Approach, Christine Di Cresce Apr 2014

Sirna Targeting Of Thymidylate Synthase, Thymidine Kinase 1 And Thymidine Kinase 2 As An Anticancer Therapy: A Combinatorial Rnai Approach, Christine Di Cresce

Electronic Thesis and Dissertation Repository

Thymidylate synthase (TS) is the only de novo source of thymidylate (dTMP) for DNA synthesis and repair. Drugs targeting TS protein are a mainstay in cancer treatment but off-target effects and toxicity limit their use. Cytosolic thymidine kinase (TK1) and mitochondrial thymidine kinase (TK2) contribute to an alternative dTMP-producing pathway, by salvaging thymidine from the tumour milieu, and may modulate resistance to TS-targeting drugs. We have previously shown that TS antisense molecules (oligodeoxynucleotides, ODNs, and small interfering siRNA, siRNA) sensitize tumour cells, both in vitro and in vivo, to TS targeting drugs. As both TS and TKs contribute to cellular …