Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry Faculty Publications

2012

UDG; base excision repair; AP sites; methoxyamine

Articles 1 - 1 of 1

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Removal Of Uracil By Uracil Dna Glycosylase Limits Pemetrexed Cytotoxicity: Overriding The Limit With Methoxyamine To Inhibit Base Excision Repair, A. D. Bulgar, L. D. Weeks, Y. Miao, S. Yang, Yan Xu, C. Guo, S. Markowitz, N. Oleinick, S. L. Gerson, Lili Liu Jan 2012

Removal Of Uracil By Uracil Dna Glycosylase Limits Pemetrexed Cytotoxicity: Overriding The Limit With Methoxyamine To Inhibit Base Excision Repair, A. D. Bulgar, L. D. Weeks, Y. Miao, S. Yang, Yan Xu, C. Guo, S. Markowitz, N. Oleinick, S. L. Gerson, Lili Liu

Chemistry Faculty Publications

Uracil DNA glycosylase (UDG) specifically removes uracil bases from DNA, and its repair activity determines the sensitivity of the cell to anticancer agents that are capable of introducing uracil into DNA. In the present study, the participation of UDG in the response to pemetrexed-induced incorporation of uracil into DNA was studied using isogenic human tumor cell lines with or without UDG (UDG+/+/UDG−/−). UDG−/− cells were very sensitive to pemetrexed. Cell killing by pemetrexed was associated with genomic uracil accumulation, stalled DNA replication, and catastrophic DNA strand breaks. By contrast, UDG+/+ cells were >10 times more resistant to pemetrexed due to …