Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Molecular Characterization And Tissue-Specific Gene Expression Of Dermacentor Variabilis Α-Catenin In Response To Rickettsial Infection, Piyanate Sunyakumthorn, Natthida Petchampai, Michael T. Kearney, Daniel E. Sonenshine, Kevin R. Macaluso Jan 2012

Molecular Characterization And Tissue-Specific Gene Expression Of Dermacentor Variabilis Α-Catenin In Response To Rickettsial Infection, Piyanate Sunyakumthorn, Natthida Petchampai, Michael T. Kearney, Daniel E. Sonenshine, Kevin R. Macaluso

Biological Sciences Faculty Publications

Alpha catenin is a cytoskeleton protein that acts as a regulator of actin rearrangement by forming an E-cadherin adhesion complex. In Dermacentor variabilis, a putative α-catenin (Dvα-catenin) was previously identified as differentially regulated in ovaries of ticks chronically infected with Rickettsia montanensis. To begin characterizing the role(s) of Dvα-catenin during rickettsial infection, the full-length Dvα-catenin cDNA was cloned and analysed. Comparative sequence analysis demonstrates a 3069-bp cDNA with a 2718-bp open reading frame with a sequence similar to Ixodes scapularis α-catenin. A portion of Dvα-catenin is homologous to the vinculin-conserved domain containing a putative …


Expansion Dating: Calibrating Molecular Clocks In Marine Species From Expansions Onto The Sunda Shelf Following The Last Glacial Maximum, Eric D. Crandall, Elizabeth J. Sbrocco, Timery S. Deboer, Paul H. Barber, Kent E. Carpenter Jan 2012

Expansion Dating: Calibrating Molecular Clocks In Marine Species From Expansions Onto The Sunda Shelf Following The Last Glacial Maximum, Eric D. Crandall, Elizabeth J. Sbrocco, Timery S. Deboer, Paul H. Barber, Kent E. Carpenter

Biological Sciences Faculty Publications

The rate of change in DNA is an important parameter for understanding molecular evolution and hence for inferences drawn from studies of phylogeography and phylogenetics. Most rate calibrations for mitochondrial coding regions in marine species have been made from divergence dating for fossils and vicariant events older than 1-2 My and are typically 0.5-2% per lineage per million years. Recently, calibrations made with ancient DNA (aDNA) from younger dates have yielded faster rates, suggesting that estimates of the molecular rate of change depend on the time of calibration, decaying from the instantaneous mutation rate to the phylogenetic substitution rate. aDNA …