Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne Jul 2016

In Vitro Monitoring Of Time And Dose Dependent Cytotoxicity Of Aminated Nanoparticles Using Raman Spectroscopy, Esen Efeoglu, Alan Casey, Hugh Byrne

Articles

No abstract provided.


Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska Jul 2016

Spectroscopic Studies Of Anthracyclines: Structural Characterization And In Vitro Tracking, Zeineb Farhane, Hugh Byrne, Malgorzata Baranska

Articles

A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm …


Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne Jun 2016

Modification Of The In Vitro Uptake Mechanism And Anti-Oxidant Levels In Hacat Cells And Resultant Changes To Toxicity And Oxidative Stress Of G4 And G6 Poly (Amido Amine) Dendrimer Nanoparticles., Marcus Maher, Hugh Byrne

Articles

The mechanism of cellular uptake by endocytosis and subsequent oxidative stress has been identified as the paradigm for the toxic response of cationically surface charged nanoparticles. In an attempt to circumvent the process, the effect of increased cellular membrane permeability on the uptake mechanisms of poly (amidoamine) dendrimers generation 4 (G4) and 6 (G6) in vitro was investigated. Immortalised, non-cancerous human keratinocyte (HaCaT) cells were treated with DL-Buthionine-(S,R)-sulfoximine (BSO). Active uptake of the particles was monitored using fluorescence microscopy to identify and quantify endosomal activity and resultant oxidative stress, manifest as increased levels of reactive oxygen species, monitored using the …


A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne Jun 2016

A Comparison Of Catabolic Pathways Induced In Primary Macrophages By Pristine Single Walled Carbon Nanotubes And Pristine Graphene, Caroline More, Jennifer Mcintyre, Luke O'Neill, Hugh Byrne

Articles

Understanding the correlation between the physico-chemical properties of carbonaceous nanomaterials and how these properties impact on cells and subcelluar mechanisms is critical to their risk assessment and safe translation into newly engineered devices. Here the toxicity, uptake and catabolic response of primary human macrophages to pristine graphene (PG) and pristine single walled carbon nanotubes (pSWCNT) are explored, compared and contrasted. The nanomaterial toxicity was assessed using three complementary techniques (live-dead assay, real time impedance technique and confocal microscopic analysis), all of which indicated no signs of acute cytotoxicity in response to PG or pSWCNT. Transmission electron microscopy (TEM) demonstrated that …


Evaluation Of Cytotoxicity Profile And Intracellular Localisation Of Doxorubicin-Loaded Chitosan Nanoparticles, Gabriele Dadalt Souto, Zeineb Farhane, Esen Efeoglu, Alan Casey, Jennifer Mcintyre, Hugh Byrne Apr 2016

Evaluation Of Cytotoxicity Profile And Intracellular Localisation Of Doxorubicin-Loaded Chitosan Nanoparticles, Gabriele Dadalt Souto, Zeineb Farhane, Esen Efeoglu, Alan Casey, Jennifer Mcintyre, Hugh Byrne

Articles

In the emerging field of nanomedicine, targeted delivery of nanoparticle encapsulated active pharmaceutical ingredients (API) is seen as a potential significant development, promising improved pharmacokinetics and reduced side effects. In this context, understanding the cellular uptake of the nanoparticles and subsequent subcellular distribution of the API is of critical importance. Doxorubicin (DOX) was encapsulated within chitosan nanoparticles to investigate its intracellular delivery in A549 cells in vitro. Unloaded (CS-TPP) and doxorubicin-loaded (DOX-CS-TPP) chitosan nanoparticles were characterised for size (473±41 nm), polydispersity index (0.3±0.2), zeta potential (34±4 mV), drug content (76±7 µM) and encapsulation efficiency (95±1%). The cytotoxic response to …


Spectral Pre And Post Processing For Infrared And Raman Spectroscopy Of Biological Tissues And Cells, Hugh Byrne, Peter Knief, Mark Keating, Franck Bonnier Mar 2016

Spectral Pre And Post Processing For Infrared And Raman Spectroscopy Of Biological Tissues And Cells, Hugh Byrne, Peter Knief, Mark Keating, Franck Bonnier

Articles

Vibrational Spectroscopy, both infrared absorption and Raman spectroscopy, have attracted increasing attention for biomedical applications, from in vivo and ex vivo disease diagnostics and screening, to in vitro screening of therapeutics. There remain, however, many challenges related to the accuracy of analysis of physically and chemically inhomogeneous samples, across heterogeneous sample sets. Data preprocessing is required to deal with variations in instrumental responses and intrinsic spectral backgrounds and distortions in order to extract reliable spectral data. Data postprocessing is required to extract the most reliable information from the sample sets, based on often very subtle changes in spectra associated with …


Acellular Reactivity Of Polymeric Dendrimer Nanoparticles As An Indicator Of Oxidative Stress In Vitro, Marcus Maher, Humza Khalid, Hugh Byrne Feb 2016

Acellular Reactivity Of Polymeric Dendrimer Nanoparticles As An Indicator Of Oxidative Stress In Vitro, Marcus Maher, Humza Khalid, Hugh Byrne

Articles

The need for rapid and cost effective pre-screening protocols of the toxicological response of the vast array of emerging nanoparticle types is apparent and the emerging consensus on the paradigm of oxidative stress by generation of intracellular reactive oxygen species as a primary source of the toxic response suggests the development of acellular assays to screen for nanoparticle surface reactivity. This study explores the potential of the monoamine oxidase A (MAO-A) enzyme based assay with polymeric dendrimers as cofactors and serotonin as substrate, which generates H2O2, quantified by the conversion of the Carboxy-H2DCFDA dye …


Non-Thermal Atmospheric Plasma Induces Ros-Independent Cell Death In U373mg Glioma Cells And Augments The Cytotoxicity Of Temozolomide, Gillian Conway, Alan Casey, Vladimir Milosavljevic, Yupeng Liu, Orla L. Howe, Patrick Cullen, James Curtin Feb 2016

Non-Thermal Atmospheric Plasma Induces Ros-Independent Cell Death In U373mg Glioma Cells And Augments The Cytotoxicity Of Temozolomide, Gillian Conway, Alan Casey, Vladimir Milosavljevic, Yupeng Liu, Orla L. Howe, Patrick Cullen, James Curtin

Articles

Non-thermal atmospheric plasma (NTAP) is an ionised gas produced under high voltage that can generate short-lived chemically active species and induce a cytotoxic insult in cancer cells. Cell-specific resistance to NTAP-mediated cytotoxicity has been reported in the literature. The aim of this study was to determine whether resistance against NTAP could be overcome using the human glioma cell line U373MG.

Methods:

Non-thermal atmospheric plasma was generated using a Dielectric Barrier Device (DBD) system with a maximum voltage output of 120 kV at 50 Hz. The viability of U373MG GBM cells and HeLa cervical carcinoma cells was determined using morphology, flow …


Piperlongumine (Piplartine) And Analogues: Antiproliferative Microtubule-Destabilising Agents, Mary J. Meegan, Seema M. Nathwani, Brendan Twamley, Daniela M. Zisterer, Niamh O'Boyle Jan 2016

Piperlongumine (Piplartine) And Analogues: Antiproliferative Microtubule-Destabilising Agents, Mary J. Meegan, Seema M. Nathwani, Brendan Twamley, Daniela M. Zisterer, Niamh O'Boyle

Articles

Piperlongumine (piplartine, 1) is a small molecule alkaloid that is receiving intense interest due to its antiproliferative and anticancer activities. We investigated the effects of 1 on tubulin and microtubules. Using both an isolated tubulin assay, and a combination of sedimentation and Western blotting, we demonstrated that 1 is a tubulin-destabilising agent. This result was confirmed by immunofluorescence and confocal microscopy, which showed that microtubules in MCF-7 breast cancer cells were depolymerised when treated with 1. We synthesised a number of analogues of 1 to explore structure-activity relationships. Compound 13 had the best cytotoxic profile of this series, …


Synthesis And Biochemical Evaluation Of 3-Phenoxy-1,4-Diarylazetidin-2-Ones As Tubulin-Targeting Antitumor Agents, Thomas F. Greene, Shu Wang, Lisa M. Greene, Seema M. Nathwani, Jade K. Pollock, Azizah M. Malebari, Thomas Mccabe, Brendan Twamley, Niamh O'Boyle, Daniela M. Zisterer, Mary J. Meegan Jan 2016

Synthesis And Biochemical Evaluation Of 3-Phenoxy-1,4-Diarylazetidin-2-Ones As Tubulin-Targeting Antitumor Agents, Thomas F. Greene, Shu Wang, Lisa M. Greene, Seema M. Nathwani, Jade K. Pollock, Azizah M. Malebari, Thomas Mccabe, Brendan Twamley, Niamh O'Boyle, Daniela M. Zisterer, Mary J. Meegan

Articles

Structure-activity relationships for a series of 3-phenoxy-1,4-diarylazetidin-2-ones were investigated leading to the discovery of a number of potent antiproliferative compounds, including trans-4-(3-hydroxy-4-methoxyphenyl)-3-phenoxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (78b) and trans-4-(3-amino-4-methoxyphenyl)-3-phenoxy-1-(3,4,5-trimethoxyphenyl)azetidin-2-one (90b). X-ray crystallography studies indicate the potential importance of the torsional angle between the 1-phenyl ‘A’ ring and 4-phenyl ‘B’ ring for potent antiproliferative activity, and that a trans configuration between the 3-phenoxy and 4-phenyl rings is generally optimal. These compounds displayed IC50 values of 38 nM and 19 nM respectively in MCF-7 breast cancer cells, inhibited the polymerization of isolated tubulin in vitro, disrupted the microtubular …


Artemisinin Production By Plant Hairy Root Cultures In Gas- And Liquid-Phase Bioreactors, Nivedita Patra, Ashok K. Srivastava Jan 2016

Artemisinin Production By Plant Hairy Root Cultures In Gas- And Liquid-Phase Bioreactors, Nivedita Patra, Ashok K. Srivastava

Articles

Key message

Alternative biotechnological protocol for large-scale artemisinin production was established. It featured enhanced growth and artemisinin production by cultivation of hairy roots in nutrient mist bioreactor (NMB) coupled with novel cultivation strategies.

Artemisinin is used for the treatment of cerebral malaria. Presently, its main source is from seasonal plant Artemisia annua. This study featured investigation of growth and artemisinin production by A. annua hairy roots (induced by Agrobacterium rhizogenes-mediated genetic transformation of explants) in three bioreactor configurations—bubble column reactor, NMB and modified NMB particularly to establish their suitability for commercial production. It was observed that cultivation of …