Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Function Of Carmil1 In Migrating Cells, Marc Edwards Dec 2013

The Function Of Carmil1 In Migrating Cells, Marc Edwards

All Theses and Dissertations (ETDs)

This dissertation describes the physiological role of the Capping Protein- CARMIL interaction in migrating cells. I establish the CARMIL-CP complex as a key regulator of lamellipodial actin assembly and of lamellipodial dynamics. Membrane ruffling at the leading edge of motile cells and macropinocytosis were also found to be dependent on the CARMIL1-CP interaction. This is consistent with macropinocytosis and ruffling being dependent on a functional and dynamic lamellipodium.: Kerr and Teasdale, 2009).

In chapter two I demonstrate that the CBR of CARMIL1 is competent to inhibit CP in cells. I show that overexpression of the CBR in cells leads to …


Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit Dec 2013

Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit

Biology Faculty Publications & Presentations

Throughout the eukaryotic world, kinesins serve as molecular motors for the directional transport of cellular cargo along microtubule tracks. Plants contain a large number of kinesins that have conserved as well as specialized functions. These functions depend on mechanisms that regulate when, where and what kinesins transport. In this review, we highlight recent studies that have revealed conserved modes of regulation between plant kinesins and their non-photosynthetic counterparts. These findings lay the groundwork for understanding how plant kinesins are differentially engaged in various cellular processes that underlie plant growth and development.


Cooperative Tumor Suppression By Arf And P53, Jason Thomas Forys Nov 2013

Cooperative Tumor Suppression By Arf And P53, Jason Thomas Forys

All Theses and Dissertations (ETDs)

Cancer is a complex genetic disease characterized by the inactivation of tumor suppressor genes and enhanced activity of oncogenes leading to deregulated cellular proliferation. Two tumor suppressor genes, p53 and Arf, play important roles in protecting cells against numerous biological stresses. In response to oncogenic signals, increased ARF expression leads to the activation of p53, which in turn leads to the cessation of cell division or induction of an apoptotic response. Interestingly, p53 coordinates repression of Arf transcription, setting up a negative feedback loop with currently unknown physiological significance. Cells that lack p53 express elevated levels of ARF, but it …


Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit Nov 2013

Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit

Biology Faculty Publications & Presentations

Highlights

  • Severing primarily depolymerizes the overlying CMT at crossover sites
  • Severing probability increases nonlinearly with crossover time
  • Katanin localizes to crossover sites and is required for severing
  • Loss of katanin activity prevents the formation of coaligned CMT arrays

Summary
The noncentrosomal cortical microtubules (CMTs) of land plants form highly ordered parallel arrays that mediate cell morphogenesis by orienting cellulose deposition [1, 2 and 3]. Since new CMTs initiate from dispersed cortical sites at random orientations [4], parallel array organization is hypothesized to require selective pruning of CMTs that are not in the dominant orientation. Severing of CMTs at crossover sites …


Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell Aug 2013

Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. …


A Force Of Nature: Molecular Mechanisms Of Mechanoperception In Plants, Gabriele B. Monshausen, Elizabeth S. Haswell Aug 2013

A Force Of Nature: Molecular Mechanisms Of Mechanoperception In Plants, Gabriele B. Monshausen, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

The ability to sense and respond to a wide variety of mechanical stimuli-gravity, touch, osmotic pressure, or the resistance of the cell wall-is a critical feature of every plant cell, whether or not it is specialized for mechanotransduction. Mechanoperceptive events are an essential part of plant life, required for normal growth and development at the cell, tissue, and whole-plant level and for the proper response to an array of biotic and abiotic stresses. One current challenge for plant mechanobiologists is to link these physiological responses to specific mechanoreceptors and signal transduction pathways. Here, we describe recent progress in the identification …


Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit Jul 2013

Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit

Biology Faculty Publications & Presentations

The interphase cortical microtubules (CMTs) of plant cells form strikingly ordered arrays in the absence of a dedicated microtubule-organizing center. Considerable research effort has focused on activities such as bundling and severing that occur after CMT nucleation and are thought to be important for generating and maintaining ordered arrays. In this review, we focus on how nucleation affects CMT array organization. The bulk of CMTs are initiated from γ-tubulin-containing nucleation complexes localized to the lateral walls of pre-existing CMTs. These CMTs grow either at an acute angle or parallel to the pre-existing CMT. Although the impact of microtubule-dependent nucleation is …


A Bacterial Symbiont Is Converted From An Inedible Producer Of Beneficial Molecules Into Food By A Single Mutation In The Gaca Gene, Pierre Stallforth, Debra A. Brock, Alexandra M. Cantley, Xiangjun Tian, David C. Queller, Joan E. Strassmann, Jon Clardy Jan 2013

A Bacterial Symbiont Is Converted From An Inedible Producer Of Beneficial Molecules Into Food By A Single Mutation In The Gaca Gene, Pierre Stallforth, Debra A. Brock, Alexandra M. Cantley, Xiangjun Tian, David C. Queller, Joan E. Strassmann, Jon Clardy

Biology Faculty Publications & Presentations

Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria's host is a "farmer" clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer's spore production and …