Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A Novel Approach For Characterizing The Ultra-Micro Size-Fraction Community, Abdullah Ahmed Salim, Priscilla Nicole Pineda, Isabella Alamilla, Andrew Dean Putt Sep 2021

A Novel Approach For Characterizing The Ultra-Micro Size-Fraction Community, Abdullah Ahmed Salim, Priscilla Nicole Pineda, Isabella Alamilla, Andrew Dean Putt

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

A Novel Approach for Characterizing the Ultra-Micro Size-Fraction Community

Students: Abdullah Salim, Priscilla Pineda, Isabella Alamilla

Mentors/Supervisors: Andrew Putt, Terry C. Hazen

ABSTRACT

The ultra-micro size-fraction (UMSF) are bacteria that can pass through the 0.2 µm pore membrane filters employed in environmental surveys. Despite being ubiquitous and having high metabolic activity, UMSF remain elusive and largely uncultured. Investigations of UMSF are skewed by difficulties in culturing and a lack of techniques for measuring UMSF biogeochemical signatures. This study measures surface stream UMSF community diversity, and community response to the addition of the synthetic pharmaceutical and cosmetic carbon product cyclodextrin which …


60. Epfl Genes And Their Role In Flower Development In Arabidopsis Thaliana, Rachael Deboe Sep 2021

60. Epfl Genes And Their Role In Flower Development In Arabidopsis Thaliana, Rachael Deboe

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Flowers are composed of four floral organ types: sepals, petals, stamens, and a pistil. In Arabidopsis thaliana, the ERECTA family leucine rich repeat receptor like kinases (LRR-RLKs) have been shown to regulate plant morphology. Epidermal Patterning Factor-Like (EPFL) genes encode for small secretory proteins that are ligands for ERECTA Family (ERf) receptors. It is suspected that EPFL’s act as a signal to coordinate proper lateral organ number, patterning, and spacing. ERf mutants have significant defects in flower development, including difficulty forming anther lobes and pistils, yet little is known about how individual EPFL ligands contribute to ERf signaling. In order …


Cell Separation Delay And Membrane Trafficking Defects In Cdc42 Gap Mutants, Haylee Grace Young Apr 2019

Cell Separation Delay And Membrane Trafficking Defects In Cdc42 Gap Mutants, Haylee Grace Young

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Cytokinesis is the final step in cell division, where a cell separates into two daughter cells. Cytokinesis involves many steps that must be organized in a spatiotemporal manner. In many eukaryotes, it involves the assembly and constriction of an actomyosin ring. The fission yeast Schizosaccharomyces pombe serves as a good model system to study cytokinesis because they divide via actomyosin-dependent-cytokinesis.

The Rho-family of small GTPases are molecules involved in the regulation of cell growth and division. The GTPase Cdc42 helps promote timely onset of ring constriction and septum formation in fission yeast. Studies with many other organisms show that Cdc42 …


Circadian Rhythmicity And Neurodevelopment Of Disco And Grim Mutations In Drosophila Melanogaster, John Patrick Story Apr 2019

Circadian Rhythmicity And Neurodevelopment Of Disco And Grim Mutations In Drosophila Melanogaster, John Patrick Story

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

The death gene grim and its pathway for apoptosis has been studied extensively in Drosophila Melanogaster. The effects of grim mutations on circadian neurodevelopment and locomotor assays have yet to be investigated. Mutations in the gene disconnected (disco) has been shown to disrupt the normal development of the circadian circuitry, specifically the small ventro-lateral neurons (s-LNv’s). Which has shown to severely decrease rhythmicity during free-running periods. Alternatively, we have observed an increase in rhythmicity during free-running periods in grim mutations. Our goal is to investigate the neurodevelopment of the circadian circuitry and their associated locomotor activities in these Drosophila mutations.


Computational Study Of Ligand-Dependent Oligomerization Of Ribonucleotide Reductase, Bill Pham May 2018

Computational Study Of Ligand-Dependent Oligomerization Of Ribonucleotide Reductase, Bill Pham

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Certain protein oligomerization can be strongly influenced by its ligand-binding status. We constructed a computational method to investigate how ligand-binding and oligomerization can be coupled. We tackle this issue using an approximate approach of studying the properties of individual monomers and how they associate. By connecting the dynamics at monomeric level and the information of oligomer interface, we quantify the synchronization of two types of contact dynamics: (1) between the ligand and its binding pocket, and (2) the contact dynamics at interface. In this work, we applied our methodology on protein ribonucleotide reductase (RNR), which is an essential enzyme for …


Arabidopsis Thaliana Nip2;1 , A Lactic Acid Transporter, Is Essential For Plant Survival During Hypoxic Stress, Samantha Jean Mcintire May 2018

Arabidopsis Thaliana Nip2;1 , A Lactic Acid Transporter, Is Essential For Plant Survival During Hypoxic Stress, Samantha Jean Mcintire

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

NIPs are nodulin-intrinsic proteins that are specific to plants and involved in transport of water and other uncharged solutes. Arabidopsis thaliana consists of nine NIPgenes.

In the current study, attention has been focused on NIP2;1(NIPsubgroup I), one of the representative Arabidopsis NIPs, in accordance with its cellular and subcellular localization, tissue, transport activity, and biological roles in Arabidopsis.

It has been shown in experiments that AtNIP2;1is especially responsive to hypoxia-induced stress. Hypoxia is a condition in which most of the oxygen has been removed from an environment. In hypoxic environments, plants construct a …


Constitutive Expression Of Thioglucoside Glucohydrolase 1 (Tgg1) Decreases Intercellular Trafficking In Arabidopsis Thaliana, Alessandro Francesco Sarno Apr 2018

Constitutive Expression Of Thioglucoside Glucohydrolase 1 (Tgg1) Decreases Intercellular Trafficking In Arabidopsis Thaliana, Alessandro Francesco Sarno

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Plasmodesmata (PD) are pores that traverse plant cell walls, providing a route for intercellular trafficking of essential metabolites, nutrients, and signaling molecules between adjacent plant cells, thereby aiding communication. The increased size exclusion limit 2 (ise2) mutant of Arabidopsis thaliana has an increased abundance of branched PD, as well as a greater flux of intercellular trafficking. A search for proteins that interact with ISE2 identified THIOGLUCOSIDE GLUCOHYDROLASE 2 (a myrosinase). A. thaliana also encodes a second, closely-related myrosinase, TGG1. Myrosinases are enzymes that catalyze the hydrolysis of glucosinolates, a type of secondary metabolite that are amino acid derivatives. The breakdown …


Novel Mutations That Affect Stomata Development In Arabidopsis Thaliana, John Woodson Marshal Collins, William J. Carmack Apr 2014

Novel Mutations That Affect Stomata Development In Arabidopsis Thaliana, John Woodson Marshal Collins, William J. Carmack

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Located on the epidermal surface of plants, stomata are small, pore-like structures that act as channels to exchange gas and water vapor between plant cells and the environment. Concentrations of gases and water within the plant cell are regulated through opening and closing of the stomata by turgor-driven movements. In Arabidopsis thaliana, development and differentiation of cells is controlled by the ERECTA (ER) family of genes (ERECTA, ERL1, and ERL2) which encode leucine-rich repeat-receptor-like kinases (LRR-RLKs). Acting synergistically, they direct cell division in different tissues and formation of stomata in epidermis. To better understand how ERECTA family genes regulate stomata …


Novobiocin As An Allosteric Modulator Of Ste2p, Jeffrey K. Rymer, Melinda Hauser, Jeffrey M. Becker Mar 2013

Novobiocin As An Allosteric Modulator Of Ste2p, Jeffrey K. Rymer, Melinda Hauser, Jeffrey M. Becker

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

G protein-coupled receptors (GPCRs) are the target of 30-50% of all prescribed drugs for human medicine and are therefore the subject of intense study by the scientific community. It has been recognized recently that compounds called allosteric modulators can regulate GPCR activity by binding a GPCR at sites not occupied by the normal receptor-activating molecule. Such allosteric compounds are desirable drug candidates as they may produce fewer toxic side-effects than standard drugs that target GPCRs. The purpose of this study was to determine the interaction of different allosteric modulators with Ste2p, a model GPCR expressed in the yeast Saccharomyces cerevisiae. …


Phosphorylation Regulates Myosin Driven Organelle Movements, Peter Andrew Duden Mar 2013

Phosphorylation Regulates Myosin Driven Organelle Movements, Peter Andrew Duden

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Cytoplasmic streaming in plant cells is the continuous flow of cytoplasm and organelles throughout the cell, with the first observation of cytoplasmic streaming being publicized in 1774. However, the mechanism of cytoplasmic streaming remained unclear until components of the cytoskeleton were researched. Research now supports that the motive force generating cytoplasmic streaming is the interaction of myosin XI motor proteins with organelles while sliding along actin filaments. From this, a key topic of interest is how myosin driven organelle movement is regulated. Our research focuses on whether phosphorylation affects the regulation of myosin XI motor proteins. Specifically, the goal of …