Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Understanding The Molecular Mechanism Underlying The Great Thermal Stability Of Thermophilic Enzymes Using Aminoglycoside Nucleotidyltransferase 4' As A Model, Xiaomin Jing Aug 2015

Understanding The Molecular Mechanism Underlying The Great Thermal Stability Of Thermophilic Enzymes Using Aminoglycoside Nucleotidyltransferase 4' As A Model, Xiaomin Jing

Doctoral Dissertations

The aminoglycoside nucleotidyltransferase 4' (ANT) is a homodimeric enzyme that detoxifies antibiotics by nucleotidylating at the C4'-OH site. Two thermostable variants T130K and D80Y generated by direct evolution in laboratory differ by only a single residue replacement compared to the wild type mesophilic enzyme. Both variants display enhanced melting temperatures and execute catalysis at temperatures the wild type would be inactive. However, T130K variant still keeps molecular properties of mesophilic enzyme. T130àK130 does not trigger significant change in enzyme’s local flexibility or thermodynamics of ligand binding while D80Y variant has distinct properties in ligand recognition and dynamics. We hypothesize that …


Engineering Photosystem I Complexes For Use In Bio-Hybrid Dye-Sensitized Solar Cells, Richard Franklin Simmerman Aug 2015

Engineering Photosystem I Complexes For Use In Bio-Hybrid Dye-Sensitized Solar Cells, Richard Franklin Simmerman

Doctoral Dissertations

Increasing global population, growing per capita energy needs, diminishing fossil fuels, and climate change collectively will require new, innovative, and sustainable alternatives to meet the world’s growing energy needs. One of the most promising yet simple approaches are dye-sensitized solar cells (DSSCs). However, conventional DSSCs use semi-conductor anodes sensitized with complex synthetic organometallic dyes. Most dyes utilize ruthenium complexes to absorb photons, which upon excitation, inject electrons into the anode, while holes migrate to the cathode via liquid electrolyte. However, these dyes are expensive, difficult to make, and resource-limited. This dissertation focuses on replacing synthetic dyes with the naturally occurring, …


Elucidation Of Conformational Switching Mechanisms Of Sensing Proteins By Molecular Dynamics Perturbation Studies, Quentin Ramon Johnson Aug 2015

Elucidation Of Conformational Switching Mechanisms Of Sensing Proteins By Molecular Dynamics Perturbation Studies, Quentin Ramon Johnson

Doctoral Dissertations

Sensing proteins are a subclass of switchable proteins, which are biologically designed with multiple, purposeful, low-free-energy states and can interconvert between these states in the wake of some environmental perturbation. Note, that this phenomenon is no small feat. This is a preprogrammed response for regulatory purposes that requires no cognitive action and is reversible as the environment returns to normal. Sensing proteins often switch between active and non-active states, closed and open conformations or other particular dichotomous states. Therefore, understanding the mechanism by which these proteins sense a specific perturbation and how they switch between conformations is paramount. Addressing these …


Quantitative And Functional Analysis Pipeline For Label-Free Metaproteomics Data And Its Applications, Lang Ho Lee Aug 2015

Quantitative And Functional Analysis Pipeline For Label-Free Metaproteomics Data And Its Applications, Lang Ho Lee

Doctoral Dissertations

Since the large-scale metaproteome was first reported in 2005, metaproteomics has advanced at a tremendous rate both in its quantitative and qualitative metrics. Furthermore metaproteomics is now being applied as a general tool in microbial ecology in a large variety of environmental studies. Though metaproteomics is becoming a useful and even a standard tool for the microbial ecologist, standardized bioinformatics pipelines are not readily available. Therefore, we developed quantitative and functional analysis pipeline for metaproteomics (QFAM) to help analyze large and complicated metaproteomics data in a robust and timely fashion with outputs designed to be simple and clearly understood by …


Exploring Structure-Dynamics-Function Relationship In Proteins, Protein: Ligand And Protein: Protein Systems Through Computational Methods, Karan Pal Kapoor Aug 2015

Exploring Structure-Dynamics-Function Relationship In Proteins, Protein: Ligand And Protein: Protein Systems Through Computational Methods, Karan Pal Kapoor

Doctoral Dissertations

The study focuses on understanding the dynamic nature of interactions between molecules and macromolecules. Molecular modeling and simulation technologies are employed to understand how the chemical constitution of the protein, specific interactions and dynamics of its structure provide the basis of its mechanism of function. The structure-dynamics-function relationship is investigated from quantum to macromolecular-assembly level, with applications in the field of rationale drug discovery and in improving efficiency of renewable sources of energy. Results presented include investigating the role of dynamics in the following:

1) In interactions between molecules: analyzing dynamic nature of a specific non-covalent interaction known as “anion-π …


Development Of High Performance Molecular Dynamics With Application To Multimillion-Atom Biomass Simulations, Roland Schulz Aug 2015

Development Of High Performance Molecular Dynamics With Application To Multimillion-Atom Biomass Simulations, Roland Schulz

Doctoral Dissertations

An understanding of the recalcitrance of plant biomass is important for efficient economic production of biofuel. Lignins are hydrophobic, branched polymers and form a residual barrier to effective hydrolysis of lignocellulosic biomass. Understanding lignin's structure, dynamics and its interaction and binding to cellulose will help with finding more efficient ways to reduce its contribution to the recalcitrance. Molecular dynamics (MD) using the GROMACS software is employed to study these properties in atomic detail. Studying complex, realistic models of pretreated plant cell walls, requires simulations significantly larger than was possible before. The most challenging part of such large simulations is the …


Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi Aug 2015

Calmodulin-Like Protein 38: A Component Of Ribonucleoprotein Particles During Hypoxic Stress Responses In Arabidopsis, Ansul Lokdarshi

Doctoral Dissertations

Waterlogging stress leads to a crisis in energy metabolism and the accumulation of toxic metabolites due to the hypoxic and/or anoxic environment associated with this condition. To respond and adapt to this situation, higher plants employ an integrated genetic program that leads to the induction of anaerobic response polypeptide genes that encode metabolic and signaling proteins involved in altering metabolic flow and other adaptive responses. The study presented here shows that the Arabidopsis thaliana calmodulin-like protein CML38 is calcium sensor protein that serves as a member of the core anaerobic response gene family and is involved in modulating the survival …


Characterization Of The Role Of Alpha-Arylphorin In The Heliothis Virescens Midgut Response To Cry1ac Toxin From Bacillus Thuringiensis, Jerreme Jamael Jackson May 2015

Characterization Of The Role Of Alpha-Arylphorin In The Heliothis Virescens Midgut Response To Cry1ac Toxin From Bacillus Thuringiensis, Jerreme Jamael Jackson

Doctoral Dissertations

Homeostasis of the intestinal epithelium in Heliothis virescens is mediated by the proliferation and differentiation of multipotent intestinal stem cells (ISCs) that lie adjacent to the basal lamina. In response to extrinsic and intrinsic signals, ISC proliferation and differentiation promotes epithelial growth and regeneration following the loss of integrity. We tested the in vivo effects of the ISC mitogen, a [alpha]-arylphorin, on ISC proliferation and the morphological changes of the midgut during larval development. Additionally, we examined how these changes affected the intestinal epithelium response to Cry1Ac toxin from Bacillus thuringiensis. Histological and in vitro evidence supported two distinct …