Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structure Of Clostridium Perfringens Type Iv Pili, Alexander R. Meyer Mar 2021

Structure Of Clostridium Perfringens Type Iv Pili, Alexander R. Meyer

Honors Theses

Type IV pili (T4P) are thin, hair-like bacterial appendages composed of protein subunits polymerized into a helical fiber. T4P perform diverse functions such as host cell adhesion, biofilm formation, natural competence, and twitching motility. While T4P are well characterized in Gram-negative bacteria, they have more recently been found in Gram-positive bacteria as well. In this work we aimed to solve the crystal structure of the type IV major pilin protein PilA2 from Clostridium perfringens, the predominant pilus subunit which makes up about 99% of the pilus fiber. We report expression, purification, and crystallization conditions which are sufficient for X-ray …


Characterization Of Human Pyrroline-5-Carboxylate Reductase Enzymes Responsible For L-Proline Biosynthesis, Sagar Patel Aug 2020

Characterization Of Human Pyrroline-5-Carboxylate Reductase Enzymes Responsible For L-Proline Biosynthesis, Sagar Patel

Department of Biochemistry: Dissertations, Theses, and Student Research

Pyrroline-5-carboxylate reductases (EC 1.5.1.2) are important housekeeping enzymes of L-proline biosynthesis, which generate L-proline and influence redox cycling of NAD(P)H/NAD(P)+ to support cellular growth in all domains of life. Structural evidence from X-ray crystal structures of HsPYCR1 (PDB codes 5UAT, 5UAU, and 5UAV) shows both NADPH bound in the N-terminal Rao-Rossmann fold motif and an important hydrogen bond or proton donor role for Thr238 with L-P5C. The Thr238Ala mutation results in 10-fold loss in catalytic efficiency with varied L-P5C relative to the wild-type enzyme, thus indicating Thr238’s potential hydrogen bond and proton donation to L-P5C is critical for catalysis. …


Structural Basis For The Substrate Inhibition Of Proline Utilization A By Proline, David A. Korasick, Travis A. Pemberton, Benjamin W. Arentson, Donald F. Becker, John J. Tanner Jan 2018

Structural Basis For The Substrate Inhibition Of Proline Utilization A By Proline, David A. Korasick, Travis A. Pemberton, Benjamin W. Arentson, Donald F. Becker, John J. Tanner

Department of Biochemistry: Faculty Publications

Proline utilization A (PutA) is a bifunctional flavoenzyme that catalyzes the two-step oxidation of L-proline to L-glutamate using spatially separated proline dehydrogenase (PRODH) and L-glutamate-y-semialdehyde dehydrogenase (GSALDH) active sites. Substrate inhibition of the coupled PRODH-GSALDH reaction by proline is a common kinetic feature of PutAs, yet the structural basis for this phenomenon remains unknown. To understand the mechanism of substrate inhibition, we determined the 2.15 Å resolution crystal structure of Bradyrhizobium japonicum PutA complexed with proline. Proline was discovered in five locations remote from the PRODH active site. Most notably, strong electron density indicated that proline bound tightly to the …


Mutant Study Of Sinorhizobium Meliloti Proline Utilization A (Puta), Jacob E. Wilkinson, John J. Tanner, Donald F. Becker Apr 2016

Mutant Study Of Sinorhizobium Meliloti Proline Utilization A (Puta), Jacob E. Wilkinson, John J. Tanner, Donald F. Becker

UCARE Research Products

The purpose of this project is to purify and characterize the reaction kinetics of mutant versions the enzyme Proline Utilization A (PutA) in Sinorhizobium meliloti. The enzyme catalyzes the first step in proline metabolism. It has two active sites. The first is proline dehydrogenase (PRODH) which converts proline to pyrroline-5-carboxylate (P5C). The second is P5C dehydrogenase (P5CDH) which converts P5C to glutamate. Although many bacterial organisms have PutA, there are still significant interspecies variations, resulting in an entire family of PutA enzymes. The main difference is the length of the amino acid sequence. This affects the protein’s structure or …


Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. Van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede Jan 2015

Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. Van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede

Department of Biochemistry: Faculty Publications

The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11.


Structures Of The Puta Peripheral Membrane Flavoenzyme Reveal A Dynamic Substrate-Channeling Tunnel And The Quinone-Binding Site, Harkewal Singh, Benjamin W. Arentson, Donald F. Becker, John J. Tanner Mar 2014

Structures Of The Puta Peripheral Membrane Flavoenzyme Reveal A Dynamic Substrate-Channeling Tunnel And The Quinone-Binding Site, Harkewal Singh, Benjamin W. Arentson, Donald F. Becker, John J. Tanner

Department of Biochemistry: Faculty Publications

Proline utilization A (PutA) proteins are bifunctional peripheral membrane flavoenzymes that catalyze the oxidation of L-proline to L-glutamate by the sequential activities of proline dehydrogenase and aldehyde dehydrogenase domains. Located at the inner membrane of Gram-negative bacteria, PutAs play a major role in energy metabolism by coupling the oxidation of proline imported from the environment to the reduction of membrane-associated quinones. Here, we report seven crystal structures of the 1,004- residue PutA from Geobacter sulfurreducens, along with determination of the protein oligomeric state by small-angle X-ray scattering and kinetic characterization of substrate channeling and quinone reduction. The structures reveal …


Conservation Of Oxidative Protein Stabilization In An Insect Homologue Of The Parkinsonism-Associated Protein Dj-1, Jiusheng Lin, Janani Prahlad, Mark A. Wilson May 2012

Conservation Of Oxidative Protein Stabilization In An Insect Homologue Of The Parkinsonism-Associated Protein Dj-1, Jiusheng Lin, Janani Prahlad, Mark A. Wilson

Department of Biochemistry: Faculty Publications

DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well conserved in other DJ-1 homologues, including two (DJ-1α and DJ-1β) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1β. The structure of D. melanogaster DJ-1β is similar to that of human DJ-1, although two important residues in …