Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Oxygenation Properties And Isoform Diversity Of Snake Hemoglobins, Jay F. Storz, Chandrasekhar Natarajan, Hideaki Moriyama, Federico G. Hoffmann, Tobias Wang, Angela Fago, Hans Malte, Johannes Overgaard, Roy E. Weber Jan 2015

Oxygenation Properties And Isoform Diversity Of Snake Hemoglobins, Jay F. Storz, Chandrasekhar Natarajan, Hideaki Moriyama, Federico G. Hoffmann, Tobias Wang, Angela Fago, Hans Malte, Johannes Overgaard, Roy E. Weber

Jay F. Storz Publications

Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from …


Genetically Based Low Oxygen Affinities Of Felid Hemoglobins: Lack Of Biochemical Adaptation To High-Altitude Hypoxia In The Snow Leopard, Jan E. Janecka, Simone S. E. Nielsen, Sidsel D. Andersen, Federico G. Hoffmann, Roy E. Weber, Trevor Anderson, Jay F. Storz, Angela Fago Jan 2015

Genetically Based Low Oxygen Affinities Of Felid Hemoglobins: Lack Of Biochemical Adaptation To High-Altitude Hypoxia In The Snow Leopard, Jan E. Janecka, Simone S. E. Nielsen, Sidsel D. Andersen, Federico G. Hoffmann, Roy E. Weber, Trevor Anderson, Jay F. Storz, Angela Fago

School of Biological Sciences: Faculty Publications

Genetically based modifications of hemoglobin (Hb) function that increase blood–O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood–O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, …