Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

2015

Biofuels

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Triacylglycerol Synthesis During Nitrogen Stress Involves The Prokaryotic Lipid Synthesis Pathway And Acyl Chain Remodeling In The Microalgae Coccomyxa Subellipsoidea, James W. Allen, Concetta C. Dirusso, Paul N. Black Jan 2015

Triacylglycerol Synthesis During Nitrogen Stress Involves The Prokaryotic Lipid Synthesis Pathway And Acyl Chain Remodeling In The Microalgae Coccomyxa Subellipsoidea, James W. Allen, Concetta C. Dirusso, Paul N. Black

Department of Biochemistry: Faculty Publications

Triglyceride (TAG) synthesis during nitrogen starvation and recovery was addressed using Coccomyxa subellipsoidea by analyzing acylchain composition and redistribution using a bioreactor-controlled time course. Galactolipids, phospholipids and TAGs were profiled using liquid chromatography tandem mass spectroscopy (LC–MS/MS). TAG levels increased linearly through 10 days of N starvation to a final concentration of 12.6% dry weight (DW), while chloroplast membrane lipids decreased from 5% to 1.5% DW. The relative quantities of TAG molecular species, differing in acyl chain length and glycerol backbone position, remained unchanged from 3 to 10 days of N starvation. Six TAG species comprised approximately half the TAG …


Phenotypic Screening Identifies Brefeldin A/Ascotoxin As An Inducer Of Lipid Storage In The Algae Chlamydomonas Reinhardtii, Nishikant Wase, Boqiang Tu, Paul N. Black, Concetta C. Dirusso Jan 2015

Phenotypic Screening Identifies Brefeldin A/Ascotoxin As An Inducer Of Lipid Storage In The Algae Chlamydomonas Reinhardtii, Nishikant Wase, Boqiang Tu, Paul N. Black, Concetta C. Dirusso

Department of Biochemistry: Faculty Publications

The use of microalgae as a biofuel feedstock is highly desired, but current methods to induce lipid accumulation cause severe stress responses that limit biomass and, thus oil yield. To address these issues, a high throughput screening (HTS) method was devised to identify chemical inducers of growth and lipid accumulation. Optimization was performed to determine the most effective cell density, DMSO and Nile Red (NR) concentrations to monitor growth and lipid accumulation. The method was tested using 1717 compounds from National Cancer Institute (NCI) Diversity Set III and Natural Products Set II in Chlamydomonas reinhardtii. Cells were inoculated at …