Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Lipid Peroxidation Product Ekode Exacerbates Colonic Inflammation And Colon Tumorigenesis, Lei Lei, Jun Yang, Jianan Zhang, Guodong Zhang Jan 2021

The Lipid Peroxidation Product Ekode Exacerbates Colonic Inflammation And Colon Tumorigenesis, Lei Lei, Jun Yang, Jianan Zhang, Guodong Zhang

Food Science Department Faculty Publication Series

Oxidative stress is emerging as an important contributor to the pathogenesis of colorectal cancer (CRC), however, the molecular mechanisms by which the disturbed redox balance regulates CRC development remain undefined. Using a liquid chromatography?tandem mass spectrometry-based lipidomics, we found that epoxyketooctadecenoic acid (EKODE), which is a lipid peroxidation product, was among the most dramatically increased lipid molecules in the colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. This is, at least in part, due to increased oxidative stress in colon tumors, as assessed by analyzing gene expression of oxidative markers in AOM/DSS-induced CRC mice and human CRC patients in …


Modulating Glutathione Thiol Status Alters Pancreatic Β-Cell Morphogenesis In The Developing Zebrafish (Danio Rerio) Embryo, Archit Rastogi, Emily G. Severance, Haydee M. Jacobs, Sarah M. Conlin, Sadia T. Islam, Alicia R. Timme-Laragy Jan 2021

Modulating Glutathione Thiol Status Alters Pancreatic Β-Cell Morphogenesis In The Developing Zebrafish (Danio Rerio) Embryo, Archit Rastogi, Emily G. Severance, Haydee M. Jacobs, Sarah M. Conlin, Sadia T. Islam, Alicia R. Timme-Laragy

Environmental Health Sciences Faculty Publication Series

Emerging evidence suggests that redox-active chemicals perturb pancreatic islet development. To better understand potential mechanisms for this, we used zebrafish (Danio rerio) embryos to investigate roles of glutathione (GSH; predominant cellular redox buffer) and the transcription factor Nrf2a (Nfe2l2a; zebrafish Nrf2 coortholog) in islet morphogenesis. We delineated critical windows of susceptibility to redox disruption of beta-cell morphogenesis, interrogating embryos at 24, 48 and 72 h post fertilization (hpf) and visualized Nrf2a expression in the pancreas using whole-mount immunohistochemistry at 96 hpf. Chemical GSH modulation at 48 hpf induced significant islet morphology changes at 96 hpf. Pro-oxidant exposures to tert-butylhydroperoxide (77.6 …