Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Staphylococcus Pseudintermedius Adhesin Spsd Contains A Central Fibronectin-Binding Domain, Andrea S. Bordt Dec 2013

The Staphylococcus Pseudintermedius Adhesin Spsd Contains A Central Fibronectin-Binding Domain, Andrea S. Bordt

Dissertations & Theses (Open Access)

Staphylococcus pseudintermedius is a Gram-positive bacterium significant because of its ability to cause costly and difficult to treat veterinary infections worldwide. It exhibits several similarities to Staphylococcus aureus, however, very little is known about its surface adhesins. Surface adhesins in S. aureus are significant contributors to pathogenesis. S. pseudintermedius encodes the surface protein SpsD, which contains characteristics of the microbial surface components recognizing adhesive matrix molecules family and confers attachment of the heterologous host Lactococcus lactis to fibronectin. This work has identified a centrally-located fibronectin binding domain in SpsD which binds the 30 kDa N-terminal domain of fibronectin with …


Characterization Of The Rna Binding And Rna Degrading Subunits Of The Eukaryotic Exosome, Borislava Tsanova Dec 2013

Characterization Of The Rna Binding And Rna Degrading Subunits Of The Eukaryotic Exosome, Borislava Tsanova

Dissertations & Theses (Open Access)

The exosome is an essential complex of ten proteins involved in the processing and degradation of many RNAs in the cell. These include various stable RNAs, mRNAs, and aberrant transcripts both in the nucleus and in the cytoplasm.

In this work I characterize the three members of the exosome “cap”, the RNA binding proteins Rrp4, Rrp40, and Csl4. I determine that in spite of their structural similarity, they each have a unique essential role. Second, I determine that two of the cap proteins Rrp4 and Rrp40 have a role in bridging subunits of the PH ring of the exosome. The …


Conformational Dynamics Of K-Ras And H-Ras Proteins: Is There Functional Specificity At The Catalytic Domain?, Nandini Rambahal Aug 2013

Conformational Dynamics Of K-Ras And H-Ras Proteins: Is There Functional Specificity At The Catalytic Domain?, Nandini Rambahal

Dissertations & Theses (Open Access)

Ras proteins serve as crucial signaling modulators in cell proliferation through their ability to hydrolyze GTP and exist in a GTP “on” state and GTP “off” state. There are three different human Ras isoforms: H-ras, N-ras and K-ras (4A and 4B). Although their sequence identity is very high at the catalytic domain, these isoforms differ in their ability to activate different effectors and hence different signaling pathways. Much of the previous work on this topic has attributed this difference to the hyper variable region of Ras proteins, which contains most of the sequence variance among the isoforms and encodes specificity …


A Novel Cardiac Function Of Sumo2/3 And Senp5 Dependent Pathway And Its Physiological Impact On Congestive Cardiomyopathy, Eun Young Kim Aug 2013

A Novel Cardiac Function Of Sumo2/3 And Senp5 Dependent Pathway And Its Physiological Impact On Congestive Cardiomyopathy, Eun Young Kim

Dissertations & Theses (Open Access)

A Novel cardiac function of SUMO2/3 and SENP5 dependent pathway and its physiologic impact on congestive cardiomyopathy

Publication No.___________

Eun Young Kim, M.S.

Supervisory professor: Robert J. Schwartz, Ph.D.

SUMOylation regulates diverse cellular processes including transcription, cell cycle, protein stability, and apoptosis. Although SUMO1 has been extensively studied so far, relevance of SUMO2/3 is unclear, especially in heart. Here we show that failing heart induces SUMO2/3 conjugation. Increased SUMO2/3-dependent modification leads to congestive heart disease such as cardiac hypertrophy by promoting cardiac cell death. Calpain2 and Calpastatin as a novel SUMO2 targets have been known to be involved in mitochondrial-independent …


Studying Aggregate Formation By Amyotrophic Lateral Sclerosis-Associated Mutant Sod1 Protein In Drosophila Model, Michael Mccarthy Aug 2013

Studying Aggregate Formation By Amyotrophic Lateral Sclerosis-Associated Mutant Sod1 Protein In Drosophila Model, Michael Mccarthy

Dissertations & Theses (Open Access)

A common pathological hallmark of most neurodegenerative disorders is the presence of protein aggregates in the brain. Understanding the regulation of aggregate formation is thus important for elucidating disease pathogenic mechanisms and finding effective preventive avenues and cures. Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a selective neurodegenerative disorder predominantly affecting motor neurons. The majority of ALS cases are sporadic, however, mutations in superoxide dismutase 1 (SOD1) are responsible for about 20% of familial ALS (fALS). Mutated SOD1 proteins are prone to misfold and form protein aggregates, thus representing a good candidate for studying aggregate formation. …


Characterization Of Jak, Stat, And Src Interactions In Head And Neck Squamous Cell Carcinoma, Reshma Jaseja, Reshma Jaseja Aug 2013

Characterization Of Jak, Stat, And Src Interactions In Head And Neck Squamous Cell Carcinoma, Reshma Jaseja, Reshma Jaseja

Dissertations & Theses (Open Access)

Recurrence of Head and Neck Squamous Cell Carcinoma (HNSCC) is common; thus, it is essential to improve the effectiveness and reduce toxicity of current treatments. Proteins in the Src/Jak/STAT pathway represent potential therapeutic targets, as this pathway is hyperactive in HNSCC and it has roles in cell migration, metastasis, proliferation, survival, and angiogenesis. During short-term Src inhibition, Janus kinase (Jak) 2, and signal transducer and activator of transcription (STAT) 3 and STAT5 are dephosphorylated and inactivated. Following sustained Src inhibition, STAT5 remains inactive, but Jak2 and STAT3 are reactivated following their early inhibition. To further characterize the mechanism of this …


Structure-Function Analysis Of Human Integrator Subunit-4, Anupama Sataluri May 2013

Structure-Function Analysis Of Human Integrator Subunit-4, Anupama Sataluri

Dissertations & Theses (Open Access)

Structure-function analysis of human Integrator subunit 4

Anupama Sataluri

Advisor: Eric. J. Wagner, Ph.D.

Uridine-rich small nuclear RNAs (U snRNA) are RNA Polymerase-II (RNAPII) transcripts that are ubiquitously expressed and are known to be essential for gene expression. snRNAs play a key role in mRNA splicing and in histone mRNA expression. Inaccurate snRNA biosynthesis can lead to diseases related to defective splicing and histone mRNA expression. Although the 3′ end formation mechanism and processing machinery of other RNAPII transcripts such as mRNA has been well studied, the mechanism of snRNA 3′ end processing has remained a mystery until the recent …


Interaction Of Bacillus Anthracis Exosporium Protein Bcla With Complement Factor H And Spore Persistence In The Lung, Sarah A. Jenkins May 2013

Interaction Of Bacillus Anthracis Exosporium Protein Bcla With Complement Factor H And Spore Persistence In The Lung, Sarah A. Jenkins

Dissertations & Theses (Open Access)

Anthrax outbreaks in the United States and Europe and its potential use as a bioweapon have made Bacillus anthracis an interest of study. Anthrax infections are caused by the entry of B. anthracis spores into the host via the respiratory system, the gastrointestinal tract, cuts or wounds in the skin, and injection. Among these four forms, inhalational anthrax has the highest lethality rate and persistence of spores in the lungs of animals following pulmonary exposure has been noted for decades. However, details or mechanisms of spore persistence were not known. In this study, we investigated spore persistence in a mouse …


Interaction Between Brk And Her2 In Breast Cancer, Midan Ai May 2013

Interaction Between Brk And Her2 In Breast Cancer, Midan Ai

Dissertations & Theses (Open Access)

INTERACTION BETWEEN BRK AND HER2 IN BREAST CANCER

Midan Ai, Ph.D.

Supervisory Professor: Zhen Fan, M.D.

Breast tumor kinase (Brk) is a nonreceptor protein-tyrosine kinase that is highly expressed in approximately two thirds of breast cancers but is not detectable or is expressed at very low levels in normal mammary epithelium. Brk plays important roles in promoting proliferation, survival, invasion, and metastasis of breast cancer cells, but the mechanism(s) of which remain largely unknown. Recent studies showed that Brk is frequently co-overexpressed with human epidermal growth factor receptor-2 (HER2) and is physically associated with HER2 in breast cancer. The mechanism …


Genome-Wide Profiling Unveils Criticial Functions Of P53 In Human Embryonic Stem Cells, Kadir C. Akdemir May 2013

Genome-Wide Profiling Unveils Criticial Functions Of P53 In Human Embryonic Stem Cells, Kadir C. Akdemir

Dissertations & Theses (Open Access)

Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that …


Mechanisms Underlying The Heterogeneous Sensitivities Of Cancer Cells To Proteasome Inhibitors, Matthew C. White May 2013

Mechanisms Underlying The Heterogeneous Sensitivities Of Cancer Cells To Proteasome Inhibitors, Matthew C. White

Dissertations & Theses (Open Access)

The mechanisms underlying cellular response to proteasome inhibitors have not been clearly elucidated in solid tumor models. Evidence suggests that the ability of a cell to manage the amount of proteotoxic stress following proteasome inhibition dictates survival. In this study using the FDA-approved proteasome inhibitor bortezomib (Velcade®) in solid tumor cells, we demonstrated that perhaps the most critical response to proteasome inhibition is repression of global protein synthesis by phosphorylation of the eukaryotic initiation factor 2-α subunit (eIF2α). In a panel of 10 distinct human pancreatic cancer cells, we showed marked heterogeneity in the ability of cancer cells to induce …