Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Improving Alternate Lignin Catabolite Utilization Of Ligab From Sphingobium Sp. Strain Syk-6 Through Site Directed Mutagenesis, Kevin P. Barry, Erin F. Cohn, Abraham Ngu, Erika A. Taylor Jun 2015

Improving Alternate Lignin Catabolite Utilization Of Ligab From Sphingobium Sp. Strain Syk-6 Through Site Directed Mutagenesis, Kevin P. Barry, Erin F. Cohn, Abraham Ngu, Erika A. Taylor

Erika A. Taylor, Ph.D.

Protocatechuate 4,5-dioxygenase (LigAB) catalyzes dioxygenation of multiple lignin derived aromatic compounds—such as protocatechuate (PCA), gallate (GA) and 3-O-methyl gallate (3OMG)—with decreasing proficiency as the molecule size increases. We predicted that phenylalanine-103 of the α subunit (Phe103α) controls substrate specificity through interaction with the C5-funtionality of bound substrates, and mutagenesis would enhance GA and 3OMG catalysis. LigAB with Phe103α mutations (F103 V, F103T and F103H) displayed enhanced catalytic efficiency for dioxygenation of 3OMG, with mutants displaying 12- to 31-fold increases in View the MathML source, making these mutant enzymes more active with 3OMG than its native dioxygenase (DesZ). The F103T and …


Characterizing The Promiscuity Of Ligab, A Lignin Catabolite Degrading Extradiol Dioxygenase From Sphingomonas Paucimobilis Syk-6, Kevin P. Barry, Erika A. Taylor Sep 2013

Characterizing The Promiscuity Of Ligab, A Lignin Catabolite Degrading Extradiol Dioxygenase From Sphingomonas Paucimobilis Syk-6, Kevin P. Barry, Erika A. Taylor

Erika A. Taylor, Ph.D.

LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed …


Lipopolysaccharide Biosynthesis Without The Lipids: Substrate Recognition For Escherichia Coli Heptosyltransferasei, Daniel J. Czyzyk, Cassie Liu, Erika A. Taylor Nov 2011

Lipopolysaccharide Biosynthesis Without The Lipids: Substrate Recognition For Escherichia Coli Heptosyltransferasei, Daniel J. Czyzyk, Cassie Liu, Erika A. Taylor

Erika A. Taylor, Ph.D.

Heptosyltransferase I (HepI) is responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-D-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide (LPS). The catalytic efficiency of HepI with the fully deacylated analogue of Escherichia coli HepI LipidA is 12-fold greater than with the fully acylated substrate, with a k(cat)/K(m) of 2.7 × 10(6) M(-1) s(-1), compared to a value of 2.2 × 10(5) M(-1) s(-1) for the Kdo(2)-LipidA substrate. Not only is this is the first demonstration that an LPS biosynthetic enzyme is catalytically enhanced by the absence of lipids, this result has significant implications for downstream enzymes that …


Second-Sphere Amino Acids Contribute To Transition-State Structure In Bovine Purine Nucleoside Phosphorylase, Lei Li, Minkui Luo, Mahmoud Ghanem, Erika A. Taylor, Vern L. Schramm Feb 2008

Second-Sphere Amino Acids Contribute To Transition-State Structure In Bovine Purine Nucleoside Phosphorylase, Lei Li, Minkui Luo, Mahmoud Ghanem, Erika A. Taylor, Vern L. Schramm

Erika A. Taylor, Ph.D.

Transition-state structures of human and bovine of purine nucleoside phosphorylases differ, despite 87% homologous amino acid sequences. Human PNP (HsPNP) has a fully dissociated transition state, while that for bovine PNP (BtPNP) has early SN1 character. Crystal structures and sequence alignment indicate that the active sites of these enzymes are the same within crystallographic analysis, but residues in the second-sphere from the active sites differ significantly. Residues in BtPNP have been mutated toward HsPNP, resulting in double (Asn123Lys; Arg210Gln) and triple mutant PNPs (Val39Thr; Asn123Lys; Arg210Gln). Steady-state kinetic studies indicated unchanged catalytic activity, while pre-steady-state studies indicate that the chemical …


Transition-State Variation In Human, Bovine, And Plasmodium Falciparum Adenosine Deaminases, Minkui Lou, Vipender Singh, Erika Taylor, Vern Schramm May 2007

Transition-State Variation In Human, Bovine, And Plasmodium Falciparum Adenosine Deaminases, Minkui Lou, Vipender Singh, Erika Taylor, Vern Schramm

Erika A. Taylor, Ph.D.

Adenosine deaminases (ADAs) from human, bovine, and Plasmodium falciparum sources were analyzed by kinetic isotope effects (KIEs) and shown to have distinct but related transition states. Human adenosine deaminase (HsADA) is present in most mammalian cells and is involved in B- and T-cell development. The ADA from Plasmodium falciparum (PfADA) is essential in this purine auxotroph, and its inhibition is expected to have therapeutic effects for malaria. Therefore, ADA is of continuing interest for inhibitor design. Stable structural mimics of ADA transition states are powerful inhibitors. Here we report the transition-state structures of PfADA, HsADA, and bovine ADA (BtADA) solved …


Acyclic Ribooxacarbenium Ion Mimics As Transition State Analogues Of Human And Malarial Purine Nucleoside Phosphorylases, Erika Taylor, Keith Clinch, Peter Kelly, Lei Li, Gary Evans, Peter Tyler, Vern Schramm Apr 2007

Acyclic Ribooxacarbenium Ion Mimics As Transition State Analogues Of Human And Malarial Purine Nucleoside Phosphorylases, Erika Taylor, Keith Clinch, Peter Kelly, Lei Li, Gary Evans, Peter Tyler, Vern Schramm

Erika A. Taylor, Ph.D.

Transition state analogues of PNP, the Immucillins and DADMe-Immucillins, were designed to match transition state features of bovine and human PNPs, respectively. A third generation of inhibitors has been designed that contain an acyclic iminoalcohol to replace the cyclic mimic of the ribooxacarbenium ion at the transition states of PNPs. The best third generation inhibitor is equivalent to the best inhibitors found in the previous transition state analogues.


Synthesis Of 5‘-Methylthio Coformycins:  Specific Inhibitors For Malarial Adenosine Deaminase, Peter Tyler, Erika Taylor, Richard Froehlich, Vern Schramm Apr 2007

Synthesis Of 5‘-Methylthio Coformycins:  Specific Inhibitors For Malarial Adenosine Deaminase, Peter Tyler, Erika Taylor, Richard Froehlich, Vern Schramm

Erika A. Taylor, Ph.D.

Transition state theory suggests that enzymatic rate acceleration (kcat/knon) is related to the stabilization of the transition state for a given reaction. Chemically stable analogues of a transition state complex are predicted to convert catalytic energy into binding energy. Because transition state stabilization is a function of catalytic efficiency, differences in substrate specificity can be exploited in the design of tight-binding transition state analogue inhibitors. Coformycin and 2‘-deoxycoformycin are natural product transition state analogue inhibitors of adenosine deaminases (ADAs). These compounds mimic the tetrahedral geometry of the ADA transition state and bind with picomolar dissociation constants to enzymes from bovine, …


Neighboring Group Participation In The Transition State Of Human Purine Nucleoside Phosphorylase, Andrew Murkin, Matthew Birck, Agnes Rinaldo-Matthis, Wuxian Shi, Erika Taylor, Steven Almo, Vern Schramm Mar 2007

Neighboring Group Participation In The Transition State Of Human Purine Nucleoside Phosphorylase, Andrew Murkin, Matthew Birck, Agnes Rinaldo-Matthis, Wuxian Shi, Erika Taylor, Steven Almo, Vern Schramm

Erika A. Taylor, Ph.D.

No abstract provided.