Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Outlier Profiles Of Atomic Structures Derived From X-Ray Crystallography And From Cryo-Electron Microscopy, Lin Chen, Jing He, Angelo Facchiano Jan 2020

Outlier Profiles Of Atomic Structures Derived From X-Ray Crystallography And From Cryo-Electron Microscopy, Lin Chen, Jing He, Angelo Facchiano

Computer Science Faculty Publications

Background: As more protein atomic structures are determined from cryo-electron microscopy (cryo-EM) density maps, validation of such structures is an important task. Methods: We applied a histogram-based outlier score (HBOS) to six sets of cryo-EM atomic structures and five sets of X-ray atomic structures, including one derived from X-ray data with better than 1.5 Å resolution. Cryo-EM data sets contain structures released by December 2016 and those released between 2017 and 2019, derived from resolution ranges 0–4 Å and 4–6 Å respectively. Results: The distribution of HBOS values in five sets of X-ray structures show that HBOS is sensitive distinguishing …


An Investigation Of Atomic Structures Derived From X-Ray Crystallography And Cryo-Electron Microscopy Using Distal Blocks Of Side-Chains, Lin Chen, Jing He, Salim Sazzed, Rayshawn Walker Jan 2018

An Investigation Of Atomic Structures Derived From X-Ray Crystallography And Cryo-Electron Microscopy Using Distal Blocks Of Side-Chains, Lin Chen, Jing He, Salim Sazzed, Rayshawn Walker

Computer Science Faculty Publications

Cryo-electron microscopy (cryo-EM) is a structure determination method for large molecular complexes. As more and more atomic structures are determined using this technique, it is becoming possible to perform statistical characterization of side-chain conformations. Two data sets were involved to characterize block lengths for each of the 18 types of amino acids. One set contains 9131 structures resolved using X-ray crystallography from density maps with better than or equal to 1.5 Å resolutions, and the other contains 237 protein structures derived from cryo-EM density maps with 2-4 Å resolutions. The results show that the normalized probability density function of block …


Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He Jan 2017

Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He

Computer Science Faculty Publications

Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM …


An Effective Computational Method Incorporating Multiple Secondary Structure Predictions In Topology Determination For Cryo-Em Images, Abhishek Biswas, Desh Ranjan, Mohammad Zubair, Stephanie Zeil, Kamal Al Nasr, Jing He Jan 2017

An Effective Computational Method Incorporating Multiple Secondary Structure Predictions In Topology Determination For Cryo-Em Images, Abhishek Biswas, Desh Ranjan, Mohammad Zubair, Stephanie Zeil, Kamal Al Nasr, Jing He

Computer Science Faculty Publications

A key idea in de novo modeling of a medium-resolution density image obtained from cryo-electron microscopy is to compute the optimal mapping between the secondary structure traces observed in the density image and those predicted on the protein sequence. When secondary structures are not determined precisely, either from the image or from the amino acid sequence of the protein, the computational problem becomes more complex. We present an efficient method that addresses the secondary structure placement problem in presence of multiple secondary structure predictions and computes the optimal mapping. We tested the method using 12 simulated images from alpha-proteins and …


Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis, Lorenzo Alamo, Dan Qi, Willy Wriggers, Antonio Pinto, Jingui Zhu, Aivett Bilbao, Richard E. Gillilan, Songnian Hu, Raúl Padrón Jan 2016

Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis, Lorenzo Alamo, Dan Qi, Willy Wriggers, Antonio Pinto, Jingui Zhu, Aivett Bilbao, Richard E. Gillilan, Songnian Hu, Raúl Padrón

Mechanical & Aerospace Engineering Faculty Publications

Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a …