Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Biochemical Analyses Of Udgx-A Crosslinking Uracil-Dna Glycosylase, Chuan Liang Dec 2023

Biochemical Analyses Of Udgx-A Crosslinking Uracil-Dna Glycosylase, Chuan Liang

All Dissertations

DNA base damage is common due to exposure to various endogenous and exogenous factors. To repair the base lesions, such as uracil from cytosine deamination, enzymes from the uracil-DNA glycosylase (UDG) superfamily are critical, which can recognize the damaged base and initiate the base excision repair (BER) pathway. There used to be six families of proteins identified in the UDG superfamily until a new member, UDGX, was found in Mycobacterium smegmatis, which is a unique DNA-crosslinking UDG. In this dissertation work, a series of biochemical analyses of the newly found UDGX are performed, including the analyses of structures, functions, …


Characterization Of The Effects Of The Pyrazolopyrimidine Inhibitor Grassofermata (Nav-2729) In The Eukaryotic Pathogen Trypanosoma Brucei, Kristina Marie Parman Dec 2023

Characterization Of The Effects Of The Pyrazolopyrimidine Inhibitor Grassofermata (Nav-2729) In The Eukaryotic Pathogen Trypanosoma Brucei, Kristina Marie Parman

All Dissertations

The protozoan pathogen, Trypanosoma brucei, is the causative agent of sleeping sickness in humans and nagana in livestock in sub-Saharan Africa. T. brucei cycles between tsetse fly and mammalian hosts, and it is adapted to survive in diverse host tissues. Variant Surface Glycoprotein (VSG) plays a key role in immune evasion in the mammalian host. The VSG membrane anchor requires two myristates, 14-carbon saturated fatty acids (FAs) that are scarce in the host. T. brucei can synthesize FAs de novo, but also readily takes up exogenous FAs, despite lacking homologs to fatty acid uptake proteins found in other …


Biochemical And Kinetic Analysis Of Phosphofructokinase In The Eukaryotic Human Pathogen Entamoeba Histolytica, Jin Cho Dec 2023

Biochemical And Kinetic Analysis Of Phosphofructokinase In The Eukaryotic Human Pathogen Entamoeba Histolytica, Jin Cho

All Dissertations

Entamoeba histolytica is a water- and food-borne intestinal parasite that causes amoebiasis and liver abscess in ~100 million people each year leading to ~100,000 deaths. This amitochondriate parasite lacks many metabolic pathways including the tricarboxylic acid cycle and oxidative phosphorylation, and cannot synthesize purines, pyrimidines, or most amino acids. As a result, E. histolytica is presumed to rely on its modified pyrophosphate (PPi)-dependent glycolytic pathway for ATP production during growth on glucose. This pathway relies on a PPi-dependent rather than ATP-dependent phosphofructokinase (PFK) and thus has a net production of three ATP per glucose. However, in …


Elucidating Acetate Metabolism: Identification Of Transporters And Enzymes Required For Acetate Utilization In The Fungal Pathogen Cryptococcus Neoformans, Perry L. Kezh Aug 2023

Elucidating Acetate Metabolism: Identification Of Transporters And Enzymes Required For Acetate Utilization In The Fungal Pathogen Cryptococcus Neoformans, Perry L. Kezh

All Dissertations

Cryptococcus neoformans is the leading cause of fungal meningitis world-wide. While exposure to this environmental sporophyte is common during childhood, those who are immune compromised are at risk of infection. Following inhalation, this basidiomycetous fungus subsequently colonizes other organs though hematogenous dissemination, eventually crossing the blood brain barrier and colonizing the brain where it causes as cryptococcal meningitis. Changes in the availability of carbon sources stemming from the movement from soil to the lungs induce changes in fungal metabolism. Specifically, alveolar macrophages, which present a first line of defense against infection, provide a glucose-/amino acid-poor environment. As such, the use …


Fatty Acids And Parasitism: Towards A Better Understanding Of Lipid Metabolism In Trypanosoma Brucei, Joshua Saliutama Aug 2023

Fatty Acids And Parasitism: Towards A Better Understanding Of Lipid Metabolism In Trypanosoma Brucei, Joshua Saliutama

All Dissertations

Trypanosoma brucei is an extracellular eukaryotic parasite that causes sleeping sickness in humans and cattle. As an extracellular parasite, T. brucei relies on the host’s nutrients to satisfy its growth requirements. The parasite is unusual because it does not uptake most of the host’s lipid species. Instead, T. brucei prefers to perform de novo synthesis of most lipid species. One of the lipid species that T. brucei can both uptake and synthesize is fatty acids. In my thesis work, I investigated the dynamics of fatty acid uptake, metabolism, and utilization of T. brucei. My work starts by determining the …


Biochemical Characterization Of Ssb1, Ssb2, Sycp3, And Meilb2 In Meiotic Recombination, Garrett Buzzard Aug 2023

Biochemical Characterization Of Ssb1, Ssb2, Sycp3, And Meilb2 In Meiotic Recombination, Garrett Buzzard

All Dissertations

The genome is constantly at risk to damage from environmental and normal cellular processes. Double-strand breaks (DSBs) are one of the most deleterious forms of DNA damage as unrepaired DSBs ultimately result in cell death. Homologous recombination (HR) is a conserved DNA repair pathway that utilizes a homologous chromosome as a template for DNA synthesis to repair the DSBs relatively error-free. HR is active in both mitotic and meiotic cells but meiotic HR is initiated by the introduction of programmed DSBs into the genome. The process of HR repairs the DSBs and results in a physical connection between homologous chromosomes …


Functional Analysis Of Two Campoletis Sonorensis Ichnovirus Vinnexins In Drosophila Melanogaster, Peng Zhang Aug 2023

Functional Analysis Of Two Campoletis Sonorensis Ichnovirus Vinnexins In Drosophila Melanogaster, Peng Zhang

All Dissertations

Campoletis sonorensis Ichnovirus (CsIV) is produced by the ichneumonid parasitoid Campoletis sonorensis (the primary host). Female parasitoid wasps restrictedly replicate viruses in their ovaries and inject them into a larval lepidopteran (secondary host) during oviposition. This symbiotic virus of C. sonorensis is essential for successful parasitization. CsIV is characterized by having a large, segmented double-stranded DNA genome with a large number of genes, many of which are associated with one of five multigene families. The CsIV vinnexin gene family is one of them and has four members, including CsIV-vnxD and CsIV-vnxG. Vinnexins are homologues of insect Innexins, which form gap …


Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight May 2023

Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight

All Dissertations

Trypanosoma brucei is a kinetoplastid parasite responsible for human African trypanosomiasis (HAT) and nagana, a livestock wasting disease, which both endemic to sub-Saharan Africa. Unique to kinetoplastids are the specialized peroxisomes, named glycosomes, which compartmentalize the first several steps of glycolysis and gluconeogenesis, nucleotide sugar biosynthesis, and many other metabolic processes. Kinetoplastids are unique in that they have a single mitochondrion. In this work, I present the first study into SET domain proteins in any kinetoplastid parasites. We have characterized a predicted SET domain protein, TbSETD3, that localizes to the mitochondrion and a depletion of the protein results in growth …


New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang May 2023

New Dna Repair And Demethylation Functions In Uracil Dna Glycosylase Superfamily, Chenyan Chang

All Dissertations

Uracil-DNA glycosylase (UDG) superfamily, which consists of several groups of enzymes that recognize the damaged DNA bases and initiate the base excision repair (BER) pathway, is most important in dealing with DNA deamination and other base modifications. Thymine DNA glycosylase (TDG), which belongs to family 2 in the UDG superfamily, is able to specifically recognize and cleave the 5-methylcytosine (mC) oxidative derivatives including 5-formylcytosine (fC), 5-carboxylcytosine (caC), 5-hydromethyluracil (hmU) caused by active demethylation or DNA damage. My dissertation work is mainly focused on the fC and caC glycosylase activity within UDG superfamily. Chapter 1 is a general introduction to the …


Glycolytic Inhibitors As Leads For Drug Discovery In The Pathogenic Free-Living Amoebae, Jillian Milanes May 2023

Glycolytic Inhibitors As Leads For Drug Discovery In The Pathogenic Free-Living Amoebae, Jillian Milanes

All Dissertations

The free-living amoeba, Naegleria fowleri, can cause a rare yet usually lethal infection of the brain called primary amebic meningoencephalitis. Because of poor diagnostics and limited treatment options, the mortality rate associated with the disease is >97%. Due to our finding that glucose is critical for trophozoite growth in culture, we have been interested in exploiting amoebae glucose metabolism to identify new potential drug targets. We have characterized the first enzyme of the glycolytic pathway, glucokinase (Glck), from N. fowleri and two other pathogenic free-living amoeba, Acanthamoeba castellanii and Balamuthia mandrillaris. We have assessed their biochemical properties and …


Acetate Metabolism In The Fungal Pathogen Cryptococcus Neoformans, Oly Ahmed May 2023

Acetate Metabolism In The Fungal Pathogen Cryptococcus Neoformans, Oly Ahmed

All Dissertations

Cryptococcus neoformans is an environmental basidiomycetous fungus with a worldwide distribution and a wide range of habitats. Inhalation of the desiccated yeasts or spores of C. neoformans often leads to opportunistic pulmonary infections in immunocompromised individuals, and in severe cases causes lethal meningitis following hematogenous dissemination. During infection, depending on the tissue and disease state, the invading fungi experience a range of nutrient microenvironments within the host body. As a result, rapid metabolic adaptations geared towards efficient utilization of carbon sources alternative to glucose become one of the prime determinants of survival and growth for the pathogen. Incidentally, cryptococcal infection …