Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Ultrasound 96 Probe Device Protocol For Cancer Cell Treatment, Aisling Field, Brijesh K. Tiwari, James F. Curtin, Julie R M Mondala, Janith Wanigasekara Jan 2022

Ultrasound 96 Probe Device Protocol For Cancer Cell Treatment, Aisling Field, Brijesh K. Tiwari, James F. Curtin, Julie R M Mondala, Janith Wanigasekara

Articles

Ultrasound is a sound wave with frequencies ranging between 20 kHz and 20 MHz. Ultrasound is able to temporarily and repeatedly open the BBB safely and enhance chemotherapeutic delivery without adverse effects. This novel technique in drug delivery benefits from the powerful ability of ultrasound to produce cavitation activity. Cavitation is the generation and activity of gas-filled bubbles in a medium exposed to ultrasound. As the pressure wave passes through the media, gas bubbles expand at low pressure and contract at high pressure. This leads to oscillation which produces a circulating fluid flow known as microstreaming around the bubble with …


Converging Technologies: Targeting The Hallmarks Of Cancer Using Ultrasound And Microbubbles, Janith Wanigasekara, Andressa Maria Aguiar De Carvalho, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin Oct 2021

Converging Technologies: Targeting The Hallmarks Of Cancer Using Ultrasound And Microbubbles, Janith Wanigasekara, Andressa Maria Aguiar De Carvalho, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin

Articles

Various complex biological effects occur when ultrasonic compression waves travel through biological material. The myriad of biological outcomes instigated by ultrasound are evident when viewed through the lens of the hallmarks of cancer. Herein, we summarise the therapeutic potential of ultrasound, enhanced by microbubbles, for the treatment of cancer.


Sonoporation-Mediated Loading Of Trehalose In Cells For Cryopreservation., Charles W. Shaffer Iv, David F. Grimm, Michael A. Menze, Jonathan A. Kopechek Sep 2020

Sonoporation-Mediated Loading Of Trehalose In Cells For Cryopreservation., Charles W. Shaffer Iv, David F. Grimm, Michael A. Menze, Jonathan A. Kopechek

Undergraduate Research Events

Trehalose, a non-reducing disaccharide, is present in many microorganisms and metazoans. In these organisms, trehalose acts as a stress protectant and helps preserve lipid membranes of cells during states of desiccation and freezing. Trehalose is required on both sides of the cell membrane to achieve a significant cryoprotective effect. Specific loading methods for trehalose are required since this sugar is impermeant to mammalian cells. Trehalose loading in mammalian cells has been achieved by fluid-phase endocytosis and genetic modification for the expression of trehalose transporters, however cryoprotective outcomes are unable to compete with established methods of cryopreservation for mammalian cells. Sonoporation …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


The Development Of Skeletal Muscle In Young Horses: An Ultrasonography And Satellite Cell Approach, Emma K. Lavigne May 2015

The Development Of Skeletal Muscle In Young Horses: An Ultrasonography And Satellite Cell Approach, Emma K. Lavigne

Honors Scholar Theses

Muscle growth in young horses is characterized by an increase in muscle cross-sectional area, which can be accomplished through the activation and differentiation of satellite cells. Satellite cells can be stimulated or inhibited in response to different cytokines and growth factors and are key mediators of muscle hypertrophy and regeneration. The aim of this study was to investigate the growth of the longissimus dorsi (LD) muscle in horses under 5 years of age and to obtain preliminary data on satellite cell behavior in foals. The area, width, height, and subcutaneous fat were measured using ultrasonography at 6-month increments over the …


A Comparison Of Angiography Versus Intravascular Ultrasound In The Treatment Of Peripheral Arterial Disease, Michael Pompliano May 2014

A Comparison Of Angiography Versus Intravascular Ultrasound In The Treatment Of Peripheral Arterial Disease, Michael Pompliano

Senior Theses

Peripheral Arterial Disease is a growing epidemic throughout the United States. It is estimated that 8 to 12 million Americans currently suffer from PAD, a disease of the circulatory system that limits blood flow to your hands and feet. This limited blood flow is due to the narrowing of the arteries that supply blood throughout your body and can disrupt the balance of the nerves and tissues that make up your extremities. If left untreated, it can cause irreparable, life- threatening damage that may result in amputation of the diseased limb. Although the mechanism of PAD is known and well …


The Speed Of Sound And Attenuation Of An Iec Agar-Based Tissue-Mimicking Material For High Frequency Ultrasound Applications, Chao Sun, Stephen Pye, Jacinta Browne, Anna Janeczko, Bill Ellis, Mairead Butler, Vassilis Sboros, Adrain Thomson, Mark Brewin, Charles Earnshaw, Carmel Moran Jan 2012

The Speed Of Sound And Attenuation Of An Iec Agar-Based Tissue-Mimicking Material For High Frequency Ultrasound Applications, Chao Sun, Stephen Pye, Jacinta Browne, Anna Janeczko, Bill Ellis, Mairead Butler, Vassilis Sboros, Adrain Thomson, Mark Brewin, Charles Earnshaw, Carmel Moran

Articles

No abstract provided.