Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association Sep 2019

9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association

Annual Postdoctoral Science Symposium Abstracts

The mission of the Annual Postdoctoral Science Symposium (APSS) is to provide a platform for talented postdoctoral fellows throughout the Texas Medical Center to present their work to a wider audience. The MD Anderson Postdoctoral Association convened its inaugural Annual Postdoctoral Science Symposium (APSS) on August 4, 2011.

The APSS provides a professional venue for postdoctoral scientists to develop, clarify, and refine their research as a result of formal reviews and critiques of faculty and other postdoctoral scientists. Additionally, attendees discuss current research on a broad range of subjects while promoting academic interactions and enrichment and developing new collaborations.


Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang Aug 2019

Understanding The Molecular And Cellular Functions Of Odd-Skipped Related 1 In Outflow Tract Development, Menglan Xiang

Theses and Dissertations

The cardiac outflow tract (OFT) is a transient conduit that connects the embryonic heart chambers to the vascular network. Transcription factor Osr1 promotes the proliferation and cell cycle progression of second heart field (SHF), an essential cell population that contribute to the developing OFT. In this study, we investigated the role of Osr1 in OFT development on cellular and molecular levels using a systems biology approach. We observed OFT rotation and elongation defects, as well as double-outlet right ventricle and overriding aorta as a result of SHF-specific deletion of Osr1. Using genetic inducible fate mapping, we showed that Osr1-expressing SHF …


Substituted Anthraquinones Represent A Potential Scaffold For Dna Methyltransferase 1-Specific Inhibitors, Rebecca L. Switzer, Jessica Medrano, David A. Reedel, Jill Weiss Jul 2019

Substituted Anthraquinones Represent A Potential Scaffold For Dna Methyltransferase 1-Specific Inhibitors, Rebecca L. Switzer, Jessica Medrano, David A. Reedel, Jill Weiss

Faculty Journal Articles

In humans, the most common epigenetic DNA modification is methylation of the 5-carbon of cytosines, predominantly in CpG dinucleotides. DNA methylation is an important epigenetic mark associated with gene repression. Disruption of the normal DNA methylation pattern is known to play a role in the initiation and progression of many cancers. DNA methyltransferase 1 (DNMT1), the most abundant DNA methyltransferase in humans, is primarily responsible for maintenance of the DNA methylation pattern and is considered an important cancer drug target. Recently, laccaic acid A (LCA), a highly substituted anthraquinone natural product, was identified as a direct, DNA-competitive inhibitor of DNMT1. …


Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa Jun 2019

Divergent Transcriptional Regulation Of Suppressors Of Cytokine Signaling Genes In Adipocytes, Paula Mota De Sa

LSU Doctoral Dissertations

The Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway transduces several signals crucial for development and homeostasis. Suppressors of cytokine signaling (SOCS) proteins control JAK-STAT signaling via a negative feedback loop. The transcription factor STAT5 is known to play a significant role in fat cell development and function, and several studies suggest that acetylation may affect STAT5 transcriptional activity. To test this hypothesis, we treated 3T3-L1 adipocytes with growth hormone (GH) to activate STAT5 in the presence or absence of histone deacetylase (HDAC) inhibitors. STAT5 acetylation levels were low in adipocytes and mostly unchanged by the …


Investigating The Role Of The Chromosome 19 Microrna Cluster In Human Trophoblast Differentiation And Infantile Hemangioma, Ezinne Francess Mong Mar 2019

Investigating The Role Of The Chromosome 19 Microrna Cluster In Human Trophoblast Differentiation And Infantile Hemangioma, Ezinne Francess Mong

USF Tampa Graduate Theses and Dissertations

Trophoblast differentiation and invasion is essential for normal implantation and establishment of the maternal-fetal interface, which allows for proper nutrient exchange and support of the fetus. For this to occur, cytotrophoblasts must undergo an epithelial to mesenchymal transition and differentiate into migratory and invasive extravillous trophoblasts (EVTs) that invade the maternal decidua and myometrium. Trophoblast differentiation, migration and invasion is highly regulated by a complex network of signaling pathways, adhesion molecules and transcription factors and is important for the remodeling of maternal spiral arteries from low flow, high resistance to high flow, low resistance vessels to allow optimal perfusion of …


Advanced Proteomic And Epigenetic Characterization Of Ethanol-Induced Microglial Activation, Jennifer Guergues Guergues Mar 2019

Advanced Proteomic And Epigenetic Characterization Of Ethanol-Induced Microglial Activation, Jennifer Guergues Guergues

USF Tampa Graduate Theses and Dissertations

Microglia, the resident immune cells of the brain, can exhibit a broad range of activation phenotypes and have been implicated in several diseases and disorders of the central nervous system. Here, we described a method optimized for sensitive and rapid quantitative proteomic analysis of microglia that involves suspension trapping (S-Trap) for efficient and reproducible protein extraction from a microglial cell count expected from an individual mouse brain (~300K) while also simultaneously providing the first comprehensive proteomic characterization of a novel adult-derived mouse microglial cell line. This enhanced method was used throughout all subsequent works and was especially necessary when we …


Parp1 Is A Versatile Factor In The Regulation Of Mrna Stability And Decay, Elena A. Matveeva, Lein F. Mathbout, Yvonne N. Fondufe-Mittendorf Mar 2019

Parp1 Is A Versatile Factor In The Regulation Of Mrna Stability And Decay, Elena A. Matveeva, Lein F. Mathbout, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

PARP1 is an abundant nuclear protein with many pleiotropic functions involved in epigenetic and transcriptional controls. Abundance of mRNA depends on the balance between synthesis and decay of a particular transcript. PARP1 binds RNA and its depletion results in increased expression of genes involved in nonsense-mediated decay, suggesting that PARP1 might be involved in mRNA stability. This is of interest considering RNA binding proteins play key roles in post-transcriptional processes in all eukaryotes. We tested the direct impact of PARP1 and PARylation on mRNA stability and decay. By measuring the half-lives of two PARP1-mRNA targets we found that the half-lives …


Coupling Of Parp1-Mediated Chromatin Structural Changes To Transcriptional Rna Polymerase Ii Elongation And Cotranscriptional Splicing, Elena A. Matveeva, Qamar M. H. Al-Tinawi, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf Feb 2019

Coupling Of Parp1-Mediated Chromatin Structural Changes To Transcriptional Rna Polymerase Ii Elongation And Cotranscriptional Splicing, Elena A. Matveeva, Qamar M. H. Al-Tinawi, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Background: Recently, we showed that PARP1 is involved in cotranscriptional splicing, possibly by bridging chromatin to RNA and recruiting splicing factors. It also can influence alternative splicing decisions through the regulation of RNAPII elongation. In this study, we investigated the effect of PARP1-mediated chromatin changes on RNAPII movement, during transcription and alternative splicing.

Results: We show that RNAPII pauses at PARP1–chromatin structures within the gene body. Knockdown of PARP1 abolishes this RNAPII pausing, suggesting that PARP1 may regulate RNAPII elongation. Additionally, PARP1 alters nucleosome deposition and histone post-translational modifications at specific exon–intron boundaries, thereby affecting RNAPII movement. Lastly, genome-wide analyses …


Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang Feb 2019

Bisthioether Stapled Peptides Targeting Polycomb Repressive Complex 2 Gene Repression, Gan Zhang

Dissertations, Theses, and Capstone Projects

Interactions between proteins play a key role in nearly all cellular process, and therefore, disruption of such interactions may lead to many different types of cellular dysfunctions. Hence, pathologic protein-protein interactions (PPIs) constitute highly attractive drug targets and hold great potential for developing novel therapeutic agents for the treatment of incurable human diseases. Unfortunately, the identification of PPI inhibitors is an extremely challenging task, since traditionally used small molecule ligands are mostly unable to cover and anchor on the extensive flat surfaces that define those binary protein complexes. In contrast, large biomolecules such as proteins or peptides are ideal fits …


The Role Of H3k4 Methyltransferases In Drosophila Memory, Nicholas Raun Jan 2019

The Role Of H3k4 Methyltransferases In Drosophila Memory, Nicholas Raun

Electronic Thesis and Dissertation Repository

Gene transcription required for long-term memory requires the modification of histones. However, there are still many uncertainties about the identity and spatial expression of genes regulated by histone modifications during memory related processes. In this project I examined the role of Drosophila melanogaster methyltransferases Set1 and trx in courtship memory. Genetic knockdown of Set1 and trx in the mushroom body (MB) revealed that Set1 was necessary for short- and long-term memory, while trx was only required for long-term memory. Transcriptional profiling of MBs following trx-knockdown revealed expression changes in MB-enriched genes and genes involved in RNA processing. Among the …