Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Automatic Animation Of Molecular Motion Using Python And Cinema 4d, Diana Zajac, Nathaniel Smith, Dan Gurnon Nov 2014

Automatic Animation Of Molecular Motion Using Python And Cinema 4d, Diana Zajac, Nathaniel Smith, Dan Gurnon

Annual Student Research Poster Session

No abstract provided.


Tracing Beta Strands Using Strandtwister From Cryo-Em Density Maps At Medium Resolutions, Dong Si, Jing He Jan 2014

Tracing Beta Strands Using Strandtwister From Cryo-Em Density Maps At Medium Resolutions, Dong Si, Jing He

Computer Science Faculty Publications

Major secondary structure elements such as α helices and β sheets can be computationally detected from cryoelectron microscopy (cryo-EM) density maps with medium resolutions of 5–10 A˚ . However, a critical piece of information for modeling atomic structures is missing, because there are no tools to detect β strands from cryo-EM maps at medium resolutions. We propose a method, StrandTwister, to detect the traces of β strands through the analysis of twist, an intrinsic nature of a β sheet. StrandTwister has been tested using 100 β sheets simulated at 10 A˚ resolution and 39 β sheets computationally detected from cryo-EM …


Evaluations Of A Mechanistic Hypothesis For The Influence Of Extracellular Ions On Electroporation Due To High-Intensity, Nanosecond Pulsing, V. Sridhara, R. P. Joshi Jan 2014

Evaluations Of A Mechanistic Hypothesis For The Influence Of Extracellular Ions On Electroporation Due To High-Intensity, Nanosecond Pulsing, V. Sridhara, R. P. Joshi

Electrical & Computer Engineering Faculty Publications

The effect of ions present in the extracellular medium on electroporation by high-intensity, short-duration pulsing is studied through molecular dynamic simulations. Our simulation results indicate that mobile ions in the medium might play a role in creating stronger local electric fields across membranes that then reinforce and strengthen electroporation. Much faster pore formation is predicted in higher conductivity media. However, the impact of extracellular conductivity on cellular inflows, which depend on transport processes such as electrophoresis, could be different as discussed here. Our simulation results also show that interactions between cations (Na+ in this case) and the carbonyl oxygen of …


Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi Jan 2014

Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi

Electrical & Computer Engineering Faculty Publications

The dynamical translocation of lipids from one leaflet to another due to membrane permeabilization driven by nanosecond, high-intensity (>100 kV/cm) electrical pulses has been probed. Our simulations show that lipid molecules can translocate by diffusion through water-filled nanopores which form following high voltage application. Our focus is on multiple pulsing, and such simulations are relevant to gauge the time duration over which nanopores might remain open, and facilitate continued lipid translocations and membrane transport. Our results are indicative of a N1/2 scaling with pulse number for the pore radius. These results bode well for the use of pulse …