Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A Bioinformatic And Biochemical Analysis Of Cruciviruses, George William Kasun Oct 2021

A Bioinformatic And Biochemical Analysis Of Cruciviruses, George William Kasun

Dissertations and Theses

Cruciviruses are novel ssDNA viruses discovered through metagenomics and direct environmental DNA amplification and cloning. The genomes of cruciviruses suggest that gene transfer between RNA and DNA viruses occurred due to the presence of putative protein-encoding genes that are homologous to both ssRNA and ssDNA viruses. In order to gain a better understanding of this group of viruses both bioinformatic analyses and in vitro biochemical experiments were employed. The results of the bioinformatic analyses show that cruciviruses are a highly diverse group of ssDNA viruses. Their placement within established ssDNA phylogenies is difficult due to heterogeneity in their putative replication-associated …


Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola Sep 2021

Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola

Dissertations and Theses

Cul3-based E3 ligase is responsible for regulating a variety of cellular pathways, many of which are known to have profound effects on the proper function of multicellular organisms. Although progress over the past years has been truly impressive, our understanding of the mechanisms of E2 recruitment and selection by the BCR complex and all the roles that Cul3 plays on kidneys remains in its infancy. To explore these aspects, this dissertation aims to analyze the Cul3 complex using two different approaches: (1) We used the powerful tool of chimeric analysis to map the essential domain binding characteristics of Cul3 taking …


Mechanisms Of Connexin-46 And -50 Intercellular Channel Function And Stability By Molecular Dynamics Simulations, Bassam George Haddad Aug 2021

Mechanisms Of Connexin-46 And -50 Intercellular Channel Function And Stability By Molecular Dynamics Simulations, Bassam George Haddad

Dissertations and Theses

Gap junctions make up a class of intercellular channels that characteristically connect the cytoplasm of directly apposed cells through large assemblies, or plaques, constituted by a multitude of intercellular channels. Gap junction mediated intercellular communication is critical for a variety of physiological functions, from coordinating electrical impulses in the heart and brain to maintaining homeostasis in most tissues. There are 21 isoforms of connexins, the constituent subunit of the gap junction, expressed in a tissue dependent manner. Gap junctions formed from different isoforms exhibit distinct biophysical properties, such as gating kinetics and sensitivity, as well as unique permeability and selectivity …


Steady-State Transmembrane Water Exchange In Proliferating Cultures Of Saccharomyces Cerevisiae, Joseph O'Malley Armstrong May 2021

Steady-State Transmembrane Water Exchange In Proliferating Cultures Of Saccharomyces Cerevisiae, Joseph O'Malley Armstrong

Dissertations and Theses

Cellular water exchange is often considered in terms of a change in volume, where a net flux of water moves across the cell membrane due to a change in osmotic pressure. Osmotic pressure can cause a cell to shrink or swell, however, rapid water exchange persists across the membrane even when the volume of the cell is constant. Steady-state transmembrane water exchange describes the exchange of water across the cell membranes which results in no net change in cell volume. This exchange is astonishingly rapid; the entire pool of intracellular water of a Saccharomyces cerevisiae cell may exchange 2-5 times …


Thermodynamics Of Ligand Binding And Global Structural Stability Of Human Serum Albumin, Matthew Walter Eskew Mar 2021

Thermodynamics Of Ligand Binding And Global Structural Stability Of Human Serum Albumin, Matthew Walter Eskew

Dissertations and Theses

Protein structure is integral to its function. For the past 70 years differential scanning calorimetry has been used to measure protein structural stability. More recently it has been used to study macromolecular interactions. Interactions between proteins and ligands can manifest on differential scanning calorimetry melting curves or thermograms. Utilizing differential scanning calorimetry thermograms to detect or diagnose diseases has been a major goal in disease diagnostics. However, correlating specific ligand-protein interactions, as manifested in a thermogram, with a disease-specific plasma thermogram, has proven elusive.

Modified human serum albumin was utilized to develop a process to capture and retrieve ligands from …