Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap Dec 2015

Alternative Use Of Dna Binding Domains By The Neurospora White Collar Complex Dictates Circadian Regulation And Light Responses, Bin Wang, Xiaoying Zhou, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift …


Period-1 Encodes An Atp-Dependent Rna Helicase That Influences Nutritional Compensation Of The Neurospora Circadian Clock, Jillian M. Emerson, Bradley M. Bartholomai, Carol S. Ringelberg, Scott E. Baker, Jennifer Loros, Jay Dunlap Dec 2015

Period-1 Encodes An Atp-Dependent Rna Helicase That Influences Nutritional Compensation Of The Neurospora Circadian Clock, Jillian M. Emerson, Bradley M. Bartholomai, Carol S. Ringelberg, Scott E. Baker, Jennifer Loros, Jay Dunlap

Dartmouth Scholarship

Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 [DEAD (Asp-Glu-Ala-Asp) Box Helicase 5] and DDX17 in humans and DBP2 (Dead Box Protein 2) in yeast, are implicated in various processes, including transcriptional regulation, elongation, and termination, ribosome biogenesis, and mRNA decay. …


Actin Filaments Target The Oligomeric Maturation Of The Dynamin Gtpase Drp1 To Mitochondrial Fission Sites, Wei-Ke Ji, Anna L. Hatch, Ronald A. Merrill, Stefan Strack, Henry N. Higgs Nov 2015

Actin Filaments Target The Oligomeric Maturation Of The Dynamin Gtpase Drp1 To Mitochondrial Fission Sites, Wei-Ke Ji, Anna L. Hatch, Ronald A. Merrill, Stefan Strack, Henry N. Higgs

Dartmouth Scholarship

While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, …


Cell Type–Dependent Mechanisms For Formin-Mediated Assembly Of Filopodia, Lorna E. Young, Ernest G. Heimsath, Henry N. Higgs Oct 2015

Cell Type–Dependent Mechanisms For Formin-Mediated Assembly Of Filopodia, Lorna E. Young, Ernest G. Heimsath, Henry N. Higgs

Dartmouth Scholarship

Filopodia are finger-like protrusions from the plasma membrane and are of fundamental importance to cellular physiology, but the mechanisms governing their assembly are still in question. One model, called convergent elongation, proposes that filopodia arise from Arp2/3 complex-nucleated dendritic actin networks, with factors such as formins elongating these filaments into filopodia. We test this model using constitutively active constructs of two formins, FMNL3 and mDia2. Surprisingly, filopodial assembly requirements differ between suspension and adherent cells. In suspension cells, Arp2/3 complex is required for filopodial assembly through either formin. In contrast, a subset of filopodia remains after Arp2/3 complex inhibition in …


Coupling Between Cytoplasmic Concentration Gradients Through Local Control Of Protein Mobility In The Caenorhabditis Elegans Zygote, Youjun Wu, Huaiying Zhang, Erik E. Griffin Jun 2015

Coupling Between Cytoplasmic Concentration Gradients Through Local Control Of Protein Mobility In The Caenorhabditis Elegans Zygote, Youjun Wu, Huaiying Zhang, Erik E. Griffin

Dartmouth Scholarship

Cell polarity is characterized by the asymmetric distribution of factors at the cell cortex and in the cytoplasm. Although mechanisms that establish cortical asymmetries have been characterized, less is known about how persistent cytoplasmic asymmetries are generated. During the asymmetric division of the Caenorhabditis elegans zygote, the PAR proteins orchestrate the segregation of the cytoplasmic RNA-binding proteins MEX-5/6 to the anterior cytoplasm and PIE-1, POS-1, and MEX-1 to the posterior cytoplasm. In this study, we find that MEX-5/6 control the segregation of GFP::PIE-1, GFP::POS-1, and GFP::MEX-1 by locally increasing their mobility in the anterior cytoplasm. Remarkably, PIE-1, POS-1, and MEX-1 …


Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros May 2015

Biological Significance Of Photoreceptor Photocycle Length: Vivid Photocycle Governs The Dynamic Vivid-White Collar Complex Pool Mediating Photo-Adaptation And Response To Changes In Light Intensity, Arko Dasgupta, Chen-Hui Chen, Changhwan Lee, Amy S. Gladfelter, Jay C. Dunlap, Jennifer J. Loros

Dartmouth Scholarship

Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability …


Synthesis Of Bioinspired Carbohydrate Amphiphiles That Promote And Inhibit Biofilms, Eric L. Dane, Alicia E. Ballok, George A. O'Toole, Mark W. Grinstaff Feb 2015

Synthesis Of Bioinspired Carbohydrate Amphiphiles That Promote And Inhibit Biofilms, Eric L. Dane, Alicia E. Ballok, George A. O'Toole, Mark W. Grinstaff

Dartmouth Scholarship

The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify …


A Hierarchical Cascade Of Second Messengers Regulates Pseudomonas Aeruginosa Surface Behaviors, Yun Luo, Kun Zhao, Amy E. Baker, Sherry L. Kuchma, Kimberly A. Coggan, Matthew C. Wolfgang, Gerard C.L. Wong, George A. O’Toole Jan 2015

A Hierarchical Cascade Of Second Messengers Regulates Pseudomonas Aeruginosa Surface Behaviors, Yun Luo, Kun Zhao, Amy E. Baker, Sherry L. Kuchma, Kimberly A. Coggan, Matthew C. Wolfgang, Gerard C.L. Wong, George A. O’Toole

Dartmouth Scholarship

Biofilms are surface-attached multicellular communities. Using single-cell tracking microscopy, we showed that apilY1 mutant of Pseudomonas aeruginosa is defective in early biofilm formation. We leveraged the observation that PilY1 pro- tein levels increase on a surface to perform a genetic screen to identify mutants altered in surface-grown expression of this pro- tein. Based on our genetic studies, we found that soon after initiating surface growth, cyclic AMP (cAMP) levels increase, depen- dent on PilJ, a chemoreceptor-like protein of the Pil-Chp complex, and the type IV pilus (TFP). cAMP and its receptor protein Vfr, together with the FimS-AlgR two-component system (TCS), …


Ploidy Variation In Multinucleate Cells Changes Under Stress, Cori A. Anderson, Samantha Roberts, Huaiying Zhang, Courtney M. Kelly, Alexxy Kendall, Changhwan Lee, John Gerstenberger, Aaron B. Koenig, Ruth Kabeche, Amy S. Gladfelter Jan 2015

Ploidy Variation In Multinucleate Cells Changes Under Stress, Cori A. Anderson, Samantha Roberts, Huaiying Zhang, Courtney M. Kelly, Alexxy Kendall, Changhwan Lee, John Gerstenberger, Aaron B. Koenig, Ruth Kabeche, Amy S. Gladfelter

Dartmouth Scholarship

Ploidy variation is found in contexts as diverse as solid tumors, drug resistance in fungal infection, and normal development. Altering chromosome or genome copy number supports adaptation to fluctuating environments but is also associated with fitness defects attributed to protein imbalances. Both aneuploidy and polyploidy can arise from multinucleate states after failed cytokinesis or cell fusion. The consequences of ploidy variation in syncytia are difficult to predict because protein imbalances are theoretically buffered by a common cytoplasm. We examined ploidy in a naturally multinucleate fungus, Ashbya gossypii. Using integrated lac operator arrays, we found that chromosome number varies substantially …