Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo Oct 2021

Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo

Publications and Research

Mechanosensitive channels respond to mechanical forces exerted on the cell membrane and play vital roles in regulating the chemical equilibrium within cells and their environment. Highresolution structural information is required to understand the gating mechanisms of mechanosensitive channels. Protein-lipid interactions are essential for the structural and functional integrity of mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives for membrane protein structural biology. This report shows that while membrane-active polymer, SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the mechanosensitive-like YnaI channel, …


Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti Sep 2021

Dual Control Of One Component Signaling: Mechanistic And Structural Insights Into El222 Active States, Uthama Phani R. Edupuganti

Dissertations, Theses, and Capstone Projects

Photoreceptors play a crucial role in signal transduction as specialized proteins which sense light as environmental stimuli and transduce the signal to control of downstream functions. Here we focus our attention on one class of these proteins, the Light-Oxygen-Voltage (LOV) domain, which is sensitive to blue light via an internally-bound flavin chromophore. Since their initial discovery in plant phototropins, many details of their photochemistry, chromophore interactions, and use with a diverse set of functional effectors have been described. However, several key details, especially a comprehensive understanding of signaling mechanism and its regulation, still remain elusive due in part to the …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Machine Learning And Solvation Theory For Drug Discovery, Lieyang Chen Sep 2021

Machine Learning And Solvation Theory For Drug Discovery, Lieyang Chen

Dissertations, Theses, and Capstone Projects

Drug discovery is a notoriously expensive and time-consuming process; hence, developing computational methods to facilitate the discovery process and lower the associated costs is a long-sought goal of computational chemists. Protein-ligand binding, which provides the physical and chemical basis for the mechanism of action of most drugs, occurs in an aqueous environment, and binding affinity is determined not only by atomic interactions between the protein and ligand but also by changes in their interactions with surrounding water molecules that occur upon binding. Thus, a quantitative understanding of the roles water molecules play in the protein-ligand binding process is an essential …


Conformation Of The Protein-Free Spliceosomal U2-U6 Snrna Complex And Remodeling By Mg2+ And Proteins, Huong Chu Sep 2021

Conformation Of The Protein-Free Spliceosomal U2-U6 Snrna Complex And Remodeling By Mg2+ And Proteins, Huong Chu

Dissertations, Theses, and Capstone Projects

Splicing of precursor messenger RNA is an essential process in eukaryotes in which the non-coding regions (introns) are removed and coding regions (exons) ligated together to form a mature mRNA. This process is catalyzed by a multi-mega Dalton ribonucleoprotein complex called the spliceosome, which is assembled from five small nuclear ribonucleoproteins (snRNP) in the form of RNA-protein complexes (U1, U2, U4, U5 and U6) and hundreds of proteins. U2 and U6 small nuclear (sn)RNAs are the only snRNAs directly implicated in catalyzing the splicing of pre-mRNA, but assembly and rearrangement steps prior to catalysis require numerous proteins. Previous studies have …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …


Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner Mar 2021

Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner

Publications and Research

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two bluelight- sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made …


The C. Neoformans Cell Wall: A Scaffold For Virulence, Christine Chrissian Feb 2021

The C. Neoformans Cell Wall: A Scaffold For Virulence, Christine Chrissian

Dissertations, Theses, and Capstone Projects

Cryptococcus neoformans is a globally distributed opportunistic fungal pathogen and the causative agent of life threatening cryptococcal meningoencephalitis in immunocompromised individuals, resulting in ~180,000 deaths each year worldwide. A primary virulence-associated trait of this organism is the production of melanin. Melanins are a class of diverse pigments produced via the oxidation and polymerization of aromatic ring compounds that have a characteristically complex, heterogenous, and amorphous structure. They are synthesized by representatives of all biological kingdoms and share a multitude of remarkable properties such as the ability to absorb ultraviolet (UV) light and protect against ionizing radiation. Melanin production in fungi …


Design Of Fibril Forming Collagen Mimetic Peptides: Heterotrimers And Nucleation Domains, Sally Tan Jan 2021

Design Of Fibril Forming Collagen Mimetic Peptides: Heterotrimers And Nucleation Domains, Sally Tan

Theses and Dissertations

This paper attempts to design collagen mimetic peptides where the triple-helical region mimics that of human Type I Collagen. With consideration for chain selection and chain register, we utilize the NC2 domain of heterotrimeric Type IX Collagen as a nucleation domain for triple-helix folding.