Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physiology

Physiology Faculty Publications

Contractile protein

Articles 1 - 1 of 1

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Omecamtiv Mecarbil Enhances The Duty Ratio Of Human Β-Cardiac Myosin Resulting In Increased Calcium Sensitivity And Slowed Force Development In Cardiac Muscle, Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C. Unrath, Michael J. Previs, Kenneth S. Campbell, Christopher M. Yengo Jan 2017

Omecamtiv Mecarbil Enhances The Duty Ratio Of Human Β-Cardiac Myosin Resulting In Increased Calcium Sensitivity And Slowed Force Development In Cardiac Muscle, Anja M. Swenson, Wanjian Tang, Cheavar A. Blair, Christopher M. Fetrow, William C. Unrath, Michael J. Previs, Kenneth S. Campbell, Christopher M. Yengo

Physiology Faculty Publications

The small molecule drug omecamtiv mecarbil (OM) specifically targets cardiac muscle myosin and is known to enhance cardiac muscle performance, yet its impact on human cardiac myosin motor function is unclear. We expressed and purified human β-cardiac myosin subfragment 1 (M2β-S1) containing a C-terminal Avi tag. We demonstrate that the maximum actin-activated ATPase activity of M2β-S1 is slowed more than 4-fold in the presence of OM, whereas the actin concentration required for half-maximal ATPase was reduced dramatically (30-fold). We find OM does not change the overall actin affinity. Transient kinetic experiments suggest that there are …