Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Regulation Of Nkcc2 Trafficking By Vesicle Fusion Proteins Vamp2 And Vamp3 In The Thick Ascending Limb, Paulo Sebastian Caceres Puzzella Jan 2014

Regulation Of Nkcc2 Trafficking By Vesicle Fusion Proteins Vamp2 And Vamp3 In The Thick Ascending Limb, Paulo Sebastian Caceres Puzzella

Wayne State University Dissertations

The thick ascending limb (TAL) in the kidney regulates extracellular fluid volume and blood pressure. The Na/K/2Cl cotransporter NKCC2 plays a central role in NaCl absorption by the TAL and blood pressure. NKCC2 trafficking to the apical membrane is a major mechanism to control NKCC2 activity. However, little is known about the proteins that mediate NKCC2 trafficking. Inhibition of the vesicle fusion proteins VAMP2 and VAMP3 blunts the increase in surface NKCC2 expression and NaCl absorption in response to stimulation by cAMP. In other cells, VAMPs mediate fusion of exocytic vesicles with the plasma membrane. Whether VAMP2 and VAMP3 mediate …


The Nh2-Hypervariable Region Modulates The Binding Affinity Of Troponin T For Tropomyosin, Chinthaka Kaushalya Amarasinghe Jan 2014

The Nh2-Hypervariable Region Modulates The Binding Affinity Of Troponin T For Tropomyosin, Chinthaka Kaushalya Amarasinghe

Wayne State University Theses

The troponin complex plays a central role in the allosteric function of sarcomeric thin filaments by enacting conformational changes during the Ca2+-regulated contraction and relaxation of striated muscle. The troponin subunit T (TnT) has two binding sites for tropomyosin (Tm) and is responsible for anchoring the troponin complex to the thin filament. Although the C-terminal and middle regions of the TnT polypeptide chain are highly conserved among the three muscle type isoforms, the hypervariable N-terminal region has evolutionarily diverged significantly among isoforms. Previous studies have shown that the N-terminal variable region fine-tunes Ca2+ regulation of muscle contractility via modulation of …