Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Role Of Fat Content On The Structure And Function Of Human Skeletal Muscle, Joseph A. Gordon Iii Aug 2023

Role Of Fat Content On The Structure And Function Of Human Skeletal Muscle, Joseph A. Gordon Iii

Doctoral Dissertations

Muscle size does not fully explain variations in muscle strength. Fat content has been implicated in muscle weakness, though this relationship remains unclear. The relationship between fat and strength may vary between scales (e.g., cellular, organ, and organism). The goal of this dissertation was to clarify the role of fat in the structure and function of muscle using in vitro and in vivo techniques across multiple scales in adults 21-45 years old. Study 1 tested the agreement of intramyocellular lipid (IMCL) content between oil red o (ORO) and magnetic resonance spectroscopy (MRS) techniques. These measures of IMCL were also compared …


Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward Sep 2022

Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward

Doctoral Dissertations

Molecular motors, such as myosin, have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction in these motors is a root cause of many pathologies necessitating the application of intrinsic control over molecular motor function. We hypothesized that altering the myosin’s energy substrate via minor positional changes to the triphosphate portion of the molecule will allow us to control the protein and affect its in vitro function. We utilized positional isomers of a synthetic non-nucleoside triphosphate, azobenzene triphosphate, and assessed whether myosin’s force- and motion-generating capacity could …


Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden Jul 2021

Link Between Muscle And Whole-Body Energetic Responses To Exercise, Christopher M.T. Hayden

Masters Theses

Substantial evidence exists regarding how skeletal muscles use energy and how this affects muscular performance. What remains unclear is how characteristics of muscle energetics affect whole-body energetics during daily living, and what effects this may have on mobility. The goal of this study was to determine the associations between muscle and whole-body energetics including the relationships between: 1) muscle PCr depletion (∆PCr) in response to light intensity isotonic contractions and the oxygen deficit at the onset of a 30-min treadmill walk (30MTW), and, 2) muscle oxidative capacity and excess post-exercise oxygen consumption (EPOC; 30MTW), respiratory exchange ratio (RER; 30MTW), and …


Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett Oct 2019

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett

Doctoral Dissertations

Skeletal muscle oxidative capacity plays a critical role in human health and disease. Although current models of oxidative phosphorylation sufficiently describe skeletal muscle energetics during moderate-intensity contractions, much is still unknown about the mechanisms that control and limit oxidative phosphorylation during high-intensity contractions. In particular, the oxygen cost of force generation is augmented during exercise at workloads above the lactate threshold. Presently, it is unclear whether this augmentation in muscle oxygen consumption is driven by increased rates of oxidative ATP synthesis (ATPOX) or by decreases in the efficiency of ATPOX due to mitochondrial uncoupling. To address this …


The Effects Of Acidosis On Calcium Dependent Binding Of A Single Crossbridge, Matthew Unger Oct 2019

The Effects Of Acidosis On Calcium Dependent Binding Of A Single Crossbridge, Matthew Unger

Masters Theses

Intracellular acidosis is a putative agent of skeletal muscle fatigue, in part, because acidosis depresses the calcium (Ca2+) sensitivity and force production of muscle (18, 50). However, the molecular mechanisms behind this depression in Ca2+ sensitivity and force production are unknown. This gap in knowledge poses a significant challenge in generating a complete understanding of the fatigue process. To close this gap, the ability of myosin to bind to a single actin filament was measured under acidic conditions, in a laser trap assay, with and without regulatory proteins. Decreasing pH from 7.4 to 6.5 reduced the frequency …


Modifications Of Myofilament Structure And Function During Global Myocardial Ischemia, Mike K. Woodward Nov 2016

Modifications Of Myofilament Structure And Function During Global Myocardial Ischemia, Mike K. Woodward

Masters Theses

Cardiac arrest is a prevalent condition with a poor prognosis, attributable in part to persistent myocardial dysfunction following resuscitation. The molecular basis of this dysfunction remains unclear. We induced cardiac arrest in a porcine model of acute sudden death and assessed the impact of ischemia and reperfusion on the molecular function of isolated cardiac contractile proteins. Cardiac arrest was electrically induced, left untreated for 12 min, and followed by a resuscitation protocol. With successful resuscitations, the heart was reperfused for 2 h (IR2) and the muscle harvested. In failed resuscitations, tissue samples were taken following the failed efforts (IDNR). Actin …


Molecular Mechanisms Underlying The Contralateral Repeated Bout Effect (Crbe) In Human Skeletal Muscle, Ling Xin Aug 2015

Molecular Mechanisms Underlying The Contralateral Repeated Bout Effect (Crbe) In Human Skeletal Muscle, Ling Xin

Doctoral Dissertations

Eccentric (muscle lengthening) exercise induces temporary muscle damage that can lead to long-term muscle adaptation, a process known as the repeated bout effect where subsequent exercise results in less damage. The existence of a contralateral repeated bout effect (CRBE) has been controversial. The primary goals of this study were to: 1) validate the existence of the CRBE; and 2) define the underlying molecular mechanisms. Thirty-six young men performed 100 maximal eccentric actions of the knee extensors using one leg (bout 1) and repeated the exercise with the contralateral leg five weeks later (bout 2). Vastus lateralis muscle biopsies were …


Effect Of A 10 Day Decrease In Physical Activity On Circulating Angiogenic Cells, Gayatri Guhanarayan Jan 2014

Effect Of A 10 Day Decrease In Physical Activity On Circulating Angiogenic Cells, Gayatri Guhanarayan

Masters Theses 1911 - February 2014

Circulating angiogenic cells (CACs) are early predictors of cardiovascular health and are inversely proportional to related outcomes. Increased number and function of CACs is seen in healthy individuals compared with individuals with cardiovascular disease (CVD). Exercise increases CAC number and function in CVD populations, through a nitric oxide-mediated mechanism. Inactivity is a growing concern in industrialized nations; it is an independent risk factor for CVD and is linked to increased mortality. The purpose of this study was to understand the effect of reduced physical activity (rPA) on two CAC populations (CFU-Hill and CD34+) in highly active individuals. We …