Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterizing The Promiscuity Of Ligab, A Lignin Catabolite Degrading Extradiol Dioxygenase From Sphingomonas Paucimobilis Syk-6, Kevin P. Barry, Erika A. Taylor Sep 2013

Characterizing The Promiscuity Of Ligab, A Lignin Catabolite Degrading Extradiol Dioxygenase From Sphingomonas Paucimobilis Syk-6, Kevin P. Barry, Erika A. Taylor

Erika A. Taylor, Ph.D.

LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed …


Comparative Metabolism Of Phenanthro[3,4-B]Thiophene And Benzo[C]Phenanthrene, Jaquan M. Williams Aug 2013

Comparative Metabolism Of Phenanthro[3,4-B]Thiophene And Benzo[C]Phenanthrene, Jaquan M. Williams

Jaquan M Williams

ABSTRACT OF THESIS Comparative Metabolism of Phenanthro[3,4-b]Thiophene And Benzo[c]Phenanthrene Polycyclic aromatic hydrocarbons (PAHs) and their sulfur-heterocyclic analogs (thia-PAHs) are commonly occurring persistent environmental contaminants formed by incomplete combustion of organic matter. A number of thia-PAHs have shown significant mutagenic and carcinogenic activities. As noted with PAHs, these chemical contaminants also require metabolic activation in order to exhibit their mutagenic and carcinogenic effects. In the present study, a comparison of the metabolism of highly mutagenic phenanthro[3,4-b]thiophene (P[3,4-b]T) and its weakly mutagenic carbon analogue, benzo[c]phenanthrene (B[c]P), was investigated. Metabolism studies were conducted using liver microsomes from induced rats, un-induced rats, as well …


Escherichia Coli Heptosyltransferase I: Investigation Of Protein Dynamics Of A Gt-B Structural Enzyme, Erika A. Taylor, Daniel J. Czyzyk, Shreya S. Sawant, Carlos A. Ramirez-Mondragon Aug 2013

Escherichia Coli Heptosyltransferase I: Investigation Of Protein Dynamics Of A Gt-B Structural Enzyme, Erika A. Taylor, Daniel J. Czyzyk, Shreya S. Sawant, Carlos A. Ramirez-Mondragon

Erika A. Taylor, Ph.D.

Heptosyltransferase I (HepI), the enzyme responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-d-manno-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide, is a member of the GT-B structural class of enzymes. Crystal structures have revealed open and closed conformations of apo and ligand-bound GT-B enzymes, implying that large-scale protein conformational dynamics play a role in their reaction mechanism. Here we report transient kinetic analysis of conformational changes in HepI reported by intrinsic tryptophan fluorescence and present the first real-time evidence of a GT-B enzyme undergoing a substrate binding-induced transition from an open to closed state prior to catalysis.


Dna Damage Repair Genes Controlling Human Papillomavirus (Hpv) Episome Levels Under Conditions Of Stability And Extreme Instability, Terri G. Edwards, Thomas J. Vidmar, Kevin Koeller, James K. Bashkin, Chris Fisher Feb 2013

Dna Damage Repair Genes Controlling Human Papillomavirus (Hpv) Episome Levels Under Conditions Of Stability And Extreme Instability, Terri G. Edwards, Thomas J. Vidmar, Kevin Koeller, James K. Bashkin, Chris Fisher

James Bashkin

DNA damage response (DDR) genes and pathways controlling the stability of HPV episomal DNA are reported here. We set out to understand the mechanism by which a DNA-binding, N-methylpyrrole-imidazole hairpin polyamide (PA25) acts to cause the dramatic loss of HPV DNA from cells. Southern blots revealed that PA25 alters HPV episomes within 5 hours of treatment. Gene expression arrays identified numerous DDR genes that were specifically altered in HPV16 episome-containing cells (W12E) by PA25, but not in HPV-negative (C33A) cells or in cells with integrated HPV16 (SiHa). A siRNA screen of 240 DDR genes was then conducted to identify enhancers …


Psychosine, The Cytotoxic Sphingolipid That Accumulates In Globoid Cell Leukodystrophy, Alters Membrane Architecture, Jacqueline A. Hawkins-Salsbury, Archana R. Parameswar, Xuntian Jiang, Paul H. Schlesinger, Ernesto Bongarzone, Daniel S. Ory, Alexei V. Demchenko, Mark S. Sands Jan 2013

Psychosine, The Cytotoxic Sphingolipid That Accumulates In Globoid Cell Leukodystrophy, Alters Membrane Architecture, Jacqueline A. Hawkins-Salsbury, Archana R. Parameswar, Xuntian Jiang, Paul H. Schlesinger, Ernesto Bongarzone, Daniel S. Ory, Alexei V. Demchenko, Mark S. Sands

Alexei Demchenko

Globoid cell leukodystrophy (GLD) is a neurological disease caused by deficiency of the lysosomal enzyme galactosylceramidase (GALC). In the absence of GALC, the cytotoxic glycosphingolipid, psychosine (psy), accumulates in the nervous system. Psychosine accumulation preferentially affects oligodendrocytes, leading to progressive demyelination and infiltration of activated monocytes/macrophages into the CNS. GLD is characterized by motor defects, cognitive deficits, seizures, and death by 2–5 years of age. It has been hypothesized that psychosine accumulation, primarily within lipid rafts, results in the pathogenic cascade in GLD. However, the mechanism of psychosine toxicity has yet to be elucidated. Therefore, we synthesized the enantiomer of …


Inhibition Of Bacillus Cereus Growth By Bacteriocin Producing Bacillus Subtilis Isolated From Fermented Baobab Seeds (Maari) Is Substrate Dependent, Donatien Kaboré, Dennis S. Nielsen, Hagrétoui Sawadogo-Lingan, Bréhima Diawara, Mamoudou H. Dicko Prof., Mogens Jakobsen, Line Thorsen Jan 2013

Inhibition Of Bacillus Cereus Growth By Bacteriocin Producing Bacillus Subtilis Isolated From Fermented Baobab Seeds (Maari) Is Substrate Dependent, Donatien Kaboré, Dennis S. Nielsen, Hagrétoui Sawadogo-Lingan, Bréhima Diawara, Mamoudou H. Dicko Prof., Mogens Jakobsen, Line Thorsen

Pr. Mamoudou H. DICKO, PhD

Maari is a spontaneously alkaline fermented food condiment made from baobab tree seeds. Due to the spontaneous nature of maari fermentations growth of the opportunistic human pathogen Bacillus cereus is occasionally observed. Bacillus subtilis strains are important for alkaline seed fermentations because of their enzymatic activities contributing to desirable texture, flavor and pH development. Some B. subtilis strains have antimicrobial properties against B. cereus. In the present work, three bacteriocin producing B. subtilis strains (B3, B122 and B222) isolated from maari were tested. The production of antimicrobial activity by the three strains was found to be greatly influenced by the …