Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi Jan 2024

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi

Graduate Theses, Dissertations, and Problem Reports

Phosphodiesterase-6 (PDE6) serves as a pivotal component in the phototransduction pathways of both cone and rod photoreceptors. In cones, PDE6 consists of tetrameric subunits: inhibitory (γ') and catalytic (α'). The catalytic subunit, PDE6α', contains a C-terminal prenylation motif. Deletion of this motif is associated with achromatopsia (ACHM), a form of color blindness. The mechanisms underlying the disease and the roles of PDE6 lipidation in vision remain elusive. Meanwhile, rod PDE6 is composed of α and β catalytic subunits and γ inhibitory subunits, with alterations in the C-terminal "prenylation motif" of PDE6β linked to retinitis pigmentosa (RP) pathology. In this comprehensive …


An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson Jan 2022

An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson

Graduate Theses, Dissertations, and Problem Reports

Aging is an inevitable process that occurs as humans grow older. It is characterized by the chronological accumulation of cellular damage over time leading to functional decline as an organism grows older. Several processes are thought to contribute to the aging phenomenon, but one of the most prolific of these is the disruption of protein homeostasis (proteostasis). The collapse of proteostasis can lead to accelerated aging and the development of age-related diseases including devastating neurodegenerative diseases (NDs) like Alzheimer and Parkinson disease. Virtually all NDs are characterized by the buildup of proteins in and around neurons resulting in neuronal death …


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


Targeting The Nt17 Of The Huntingtin Protein Via Natural And Chemical Modifications: Impact On Aggregation And Membrane Interactions, Faezeh Sedighi Jan 2020

Targeting The Nt17 Of The Huntingtin Protein Via Natural And Chemical Modifications: Impact On Aggregation And Membrane Interactions, Faezeh Sedighi

Graduate Theses, Dissertations, and Problem Reports

Huntington Disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine domain (polyQ) in the first exon of the huntingtin protein (htt-exon1). The major hallmark of HD is the accumulation of aggregates into proteinaceous inclusion bodies. PolyQ expansion in huntingtin promotes self-assembly into a variety of toxic aggregates such as oligomers, fibrils, and amorphous aggregates. The resulting heterogeneous mixture of distinct species makes it difficult to assign a toxic function to specific aggregate structures. In addition, htt interacts with a variety of membranous surfaces. The first 17 amino acids (Nt17) of htt directly flanking the polyQ domain functions …


Factors Influencing Huntingtin Aggregation At Surfaces: Implications For Huntington’S Disease, Sharon E. Groover Jan 2020

Factors Influencing Huntingtin Aggregation At Surfaces: Implications For Huntington’S Disease, Sharon E. Groover

Graduate Theses, Dissertations, and Problem Reports

Huntington’s Disease (HD) is a genetic, neurodegenerative disease characterized by an abnormal polyglutamine (polyQ) expansion in the first exon of the huntingtin protein (htt). The polyQ domain facilitates aggregation and initiates the formation of a diverse collection of aggregate species, including fibrils, oligomers and annular aggregates. The first 17 amino acids of htt (Nt17) directly flank the polyQ domain and is a key factor in htt’s association to membranous structures. In addition to Nt17 being an amphipathic αhelix, it also promotes aggregation through self-association and contains numerous posttranslational modifications (PTMs) that can modulate toxicity and subcellular localization. For in depth …


Regulator Of G Protein Signaling-12 (Rgs12) In Dopaminergic And Kappa Opioid Receptor-Dependent Signaling And Behavior, Joshua David Gross Jan 2019

Regulator Of G Protein Signaling-12 (Rgs12) In Dopaminergic And Kappa Opioid Receptor-Dependent Signaling And Behavior, Joshua David Gross

Graduate Theses, Dissertations, and Problem Reports

Dopaminergic neurotransmission is critically involved in the etiology and treatment of many psychiatric and neurological disorders. One modulator of dopaminergic neurotransmission is the kappa opioid receptor (KOR) -- a G protein-coupled receptor (GPCR) that is densely expressed within dopaminergic neurons and circuits. GPCRs are tightly regulated by a variety of intracellular signaling molecules, including Regulator of G Protein Signaling (RGS) proteins. Canonically, RGS proteins act as GTPase accelerating proteins (GAPs) on GTP-bound Ga subunits following GPCR activation, thereby hastening the rate at which GPCR-mediated G protein signaling is terminated. However, some RGS proteins exhibit more complex mechanisms of action on …