Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman Aug 2022

Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman

Graduate Theses and Dissertations

Antibiotic resistance is increasing prevalence, particularly in Candida glabrata. This opportunistic pathogen is closely phylogenetically related to Saccharomyces cerevisiae; however, its characterization is limited. C. glabrata is only second to Candida albicans as a fungal pathogen in immunocompromised patients. Commonly resistant to azoles, the most common fungal therapy, it has become costly and challenging to treat. A histatin 5 derived antifungal peptide, KM29, has a high degree of efficacy in Candida species and S. cerevisiae. The objective of this work is to advance our understanding of the mechanism of action of KM29 against C. glabrata. Previous work in the lab …


Jennifer Maurer Phd Thesis.Pdf, Jennifer Maurer Nov 2017

Jennifer Maurer Phd Thesis.Pdf, Jennifer Maurer

Jennifer Maurer


Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation.Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are …


Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee Jan 2017

Investigating The Essential Roles Of Dprl-1 In Drosophila Melanogaster, Alex Lee

Summer Research

Phosphatase of Regenerating Liver (PRL) proteins regulate a number of important cellular processes, including cell growth and division. Humans have three PRL proteins: PRL-1, PRL-2, and PRL-3. An accumulation of evidence has shown that elevated levels of PRLs are strongly correlated with uncontrollable growth and metastasis of tumors. However, contradictory findings have arisen indicating that PRLs instead function to halt cell division thereby preventing uncontrollable tumor growth. In light of these results, the underlying mechanisms regarding how PRLs function within cellular processes remains unclear. To investigate the functions of PRLs, we will create transgenic fruit flies (Drosophila melanogaster) …


Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan Jan 2017

Epigenetic Editing To Validate Findings From Methylome-Wide Association Studies Of Neuropsychiatric Disorders, Robin F. Chan

Theses and Dissertations

DNA methylation is necessary for learning, memory consolidation and has been implicated in a number of neuropsychiatric disorders. Obtaining high quality and comprehensive data for the three common forms of methylation in brain is challenging for methylome-wide association studies (MWAS). To address this we optimized a panel of enrichment methods for screening the brain methylome. Results show that these enrichment techniques approach the coverage and fidelity of the current gold standard bisulfite based techniques. Our MBD-based method can also be used with low amounts of genomic material from limited human biomaterials. Psychiatric disorders have high prevalence and are often chronic …


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez May 2016

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 system, have …