Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 193

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterizing The Role Of Pa5189 Of Pseudomonas Aeruginosa In Deletion And Overexpression Mutants, Seh Na Mellick May 2024

Characterizing The Role Of Pa5189 Of Pseudomonas Aeruginosa In Deletion And Overexpression Mutants, Seh Na Mellick

Theses/Capstones/Creative Projects

In the context of rising multidrug resistance in biofilm-forming pathogens like Pseudomonas aeruginosa, this study investigates the role of the understudied transcription factor PA5189 in antibiotic resistance and biofilm formation. PA5189 deletion and overexpression mutants were created in a parent P. aeruginosa strain using pEX18Tc-based recombinant suicide vectors, with genotypic verification of putative triparental conjugants achieved through restriction digestion and PCR. The study revealed that PA5189 overexpression significantly increases resistance to commonly used broad spectrum antibiotics such as ciprofloxacin and imipenem. Additionally, differential expression of PA5189 was found to notably affect biofilm formation, with variations contingent on the nutrient …


Characterization Of Pathological Tau Mutants, Charles J. Mcdonald Sep 2023

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald

Dissertations, Theses, and Capstone Projects

Tau is a protein expressed exclusively in glia and neurons in the central nervous system and implicated in several neurogenerative diseases called “tauopathies”. Among all the tauopathies, one third is characterized by the presence of genetic mutations leading to the synthesis of tau proteins with single amino acid substitutions at specific locations and affecting protein function. While most of the initial studies have emphasize the functional role of tau as modulator of the axonal cytoskeleton, it has recently been well accepted that tau is also an intrinsically disordered protein that tends to form membraneless organelles called coacervates, due to a …


Advances In Phaeodactylum Tricornutum Nuclear Engineering, Mark Pampuch Jul 2023

Advances In Phaeodactylum Tricornutum Nuclear Engineering, Mark Pampuch

Electronic Thesis and Dissertation Repository

The marine diatom Phaeodactylum tricornutum has the potential to become an excellent platform for the sustainable production of valuable compounds and pharmaceuticals, but currently large-scale engineering of this organism remains a challenge due factors like inefficient genetic transformation protocols and a lack of accurate genomic data. This thesis addresses these two bottlenecks by (i) optimizing an electroporation protocol to P. tricornutum and (ii) remapping genomic data from a scaffolded genome assembly to a telomere-to-telomere genome assembly. An optimized transformation protocol was developed that could consistently transform blunt-ended and DNA with overhangs and yielded up to 1000+ colony forming units per …


Review Of Biomedical Applications Of Cardiovascular Tissue Engineering, Natalie M. Howard May 2023

Review Of Biomedical Applications Of Cardiovascular Tissue Engineering, Natalie M. Howard

Honors College Theses

Tissue engineering can be defined as processes that aim to generate three-dimensional functional tissues in vitrothat have been favorably altered according to the structural, biochemical, electrophysiological, and biomechanical properties of the desired tissue before implantation into the human body. In relation to cardiac tissues, these properties would include the ability to conduct action potentials, withstand systolic pressure, permit sufficient O2 and CO2penetration, sufficient vascularization to supply nutrients for cellular activity, surface topology that enables cellular communication, and more. As heart diseases and instances of myocardial infarction continue to rise worldwide, there is an increasing need for …


Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight May 2023

Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight

All Dissertations

Trypanosoma brucei is a kinetoplastid parasite responsible for human African trypanosomiasis (HAT) and nagana, a livestock wasting disease, which both endemic to sub-Saharan Africa. Unique to kinetoplastids are the specialized peroxisomes, named glycosomes, which compartmentalize the first several steps of glycolysis and gluconeogenesis, nucleotide sugar biosynthesis, and many other metabolic processes. Kinetoplastids are unique in that they have a single mitochondrion. In this work, I present the first study into SET domain proteins in any kinetoplastid parasites. We have characterized a predicted SET domain protein, TbSETD3, that localizes to the mitochondrion and a depletion of the protein results in growth …


Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Role Of Cdx4 And Sp5l In Zebrafish Development, Wesley Tsai Apr 2023

Role Of Cdx4 And Sp5l In Zebrafish Development, Wesley Tsai

Honors Theses

The Caudal Type Homeobox transcription factors cdx are a family of genes found in vertebrates that regulates body regionalization and anterior-posterior patterning. They are also responsible for regulating axial elongation, but the mechanisms behind this behavior are not known. Previous studies in mouse embryonic stem cells have shown that the cdx genes are necessary for upregulating the gene sp5 which may be linked to axial elongation. Sp5 is a zinc-finger transcription factor belonging to the specificity protein (sp) family. Our group has used in-situ hybridization experiments on zebrafish embryos to show that sp5-like (sp5l) is transcribed within tailbud tissues that …


Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero Apr 2023

Modulation Of Plant Immunity During The Establishment Of The Nitrogen-Fixing Symbiosis, Miriam Hernandez-Romero

Doctoral Dissertations

Nitrogen is essential for plant tissue growth but is often a limited resource in soils. Many legumes overcome this limitation by entering a symbiotic association with soil microbes, called rhizobia, which provide nitrogen to the plant while rhizobia receive fixed carbon. To successfully form a symbiosis, the host and symbiont exchange a series of molecular signals. One major obstacle during this interaction is the host's innate immune system, which becomes active upon rhizobial detection. It is therefore the main focus of this thesis to identify the mechanisms that modulate host immunity. In the subsequent chapters, we focus on a rhizobial …


Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley Apr 2023

Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley

Graduate School of Biomedical Sciences Theses and Dissertations

Cells are exposed to an enormous amount of diverse extracellular cues but have a limited arsenal of weapons for protecting and maintaining homeostasis. To overcome these restrictions, nature has engineered proteins that have multiple functions. The pleiotropy of using one protein to carry out a variety of functions allows cells to rapidly execute tailored responses to a diverse set of signals. The Cdk8 kinase module (CKM) is a conserved detachable unit of the Mediator complex predominantly known for its role in transcriptional regulation. The CKM is composed of four proteins, the scaffolding proteins Med13 and Med12, as well as the …


Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle Apr 2023

Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle

Graduate School of Biomedical Sciences Theses and Dissertations

For normal cellular function, exogenous signals must be interpreted and careful coordination must take place to ensure desired fates are achieved. Mitochondria are key regulatory nodes of cellular fate, undergoing fission/fusion cycles depending on the needs of the cell, and help mediate cell death fates. The CKM or Cdk8 kinase module, is composed of cyclin C (CC), Cdk8, Med12/12L, and Med13/13L. The CKM controls RNA polymerase II, acting as a regulator of stress-response and growth-control genes. Following stress, CC translocates to the mitochondria and interacts with both fission and iRCD apoptotic mediators. We hypothesize that CC represents a key mediator, …


Generation Of Chimeric Rhinoviruses Presenting Sars-Cov-2 Broadly Neutralizing Epitopes And Their Antigenicity Characterization, Danish Ansari Jan 2023

Generation Of Chimeric Rhinoviruses Presenting Sars-Cov-2 Broadly Neutralizing Epitopes And Their Antigenicity Characterization, Danish Ansari

Biotechnology Theses

The global COVID pandemic is not yet fully under control as there were over 21 million new cases of SARS-CoV-2 infections and over 50,000 deaths globally as of January of 2022. A heavily mutated variant of concern, Omicron is responsible for most of these cases which demands an urgency for a new vaccine. NIH reports over 180 vaccine candidates that use various strategies currently in development. However, a recurring concern with these vaccines is that the continuous viral mutations decrease the efficacy of vaccines. Therefore, we proposed to construct a human rhinovirus (HRV) based chimeric virus containing highly conserved, broadly …


Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson Jan 2023

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson

Electronic Theses and Dissertations

Epigenetics is the study of molecular modification of a genome without changing its base pairs. The most studied type of epigenetic mechanism is DNA methylation, which is capable of turning a gene “on” or “off.” Epigenetic potential is the capacity to which an individual can have methylation on its genome. The more CpGs available, the greater the epigenetic potential. In invasive species, genetic variation has been observed to be paradoxical: not much of it exists on a genomic level, but epigenetically, phenotypic variation can occur. The focus on shift in gene expression in this study is on Toll-Like Receptor 4 …


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii Jan 2023

Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii

Graduate Theses, Dissertations, and Problem Reports

Saccharomyces cerevisiae are yeast that are unicellular eukaryotic organisms that are well studied as a model organism for understanding fundamental cellular processes. The ability of yeast to sense nutrient availability is crucial for their survival, growth, and reproduction. Yeast cells use various mechanisms to sense and respond to nutrient availability, including transporter-mediated uptake, receptor-mediated signaling, and sensing of metabolites. The subcellular localization of nutrient-sensing components is crucial for yeast function in nutrient sensing and signaling. Protein complexes, such as the AMP-activated protein kinase (AMPK) pathway, in nutrient sensing and response, as well as the downstream effects of these pathways …


Use Of Foreign Edna Tracers To Resolve Site- And Time-Specific Edna Distributions In Natural Streams, Braden A. Herman Jan 2023

Use Of Foreign Edna Tracers To Resolve Site- And Time-Specific Edna Distributions In Natural Streams, Braden A. Herman

Cal Poly Humboldt theses and projects

Substantial uncertainty in how to interpret eDNA observations motivates a need for a technique to effectively and efficiently measure of system- and time-specific eDNA distributions. Using a technique to robustly calibrate eDNA dynamics in a given system would improve established eDNA methods such as presence and absence and has the potential to refine estimates of organism abundance using eDNA concentration that are less well understood. Particles of eDNA are present in a wide variety of size and type resulting in varying transport dynamics, persistence, decay, among others. This variation likely makes eDNA transport more complex than that of conservative tracers …


The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter Dec 2022

The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter

Theses & Dissertations

Mitochondria are at the center of biological phenomena such as aging and diseases, especially neurodegenerative diseases. While the discovery of mitochondria only came approximately 200 years after the cell was discovered, a lot of progress has been made since. The mitochondrial genome encodes proteins vital for mitochondrial function. These proteins are only a subset of the proteins present in mitochondria; the rest are nuclear encoded. The nucleus also encodes cytosolic proteins vital for mitochondrial maintenance. One of these is Parkin, an E3 ubiquitin ligase that ubiquitinates mitochondrial proteins as mitochondria become depolarized. Its activity has been shown to be involved …


Caribbean Reef-Building Coral-Symbiodiniaceae Network: Identifying Symbioses Critical For System Stability In A Changing Climate, Shaman Patel Dec 2022

Caribbean Reef-Building Coral-Symbiodiniaceae Network: Identifying Symbioses Critical For System Stability In A Changing Climate, Shaman Patel

All HCAS Student Capstones, Theses, and Dissertations

Increasing global ocean temperatures and frequency of marine heatwaves pose dire consequences for coral reefs. High temperatures often lead to disruptions in coral symbiosis resulting in coral bleaching, increasing the mortality of corals. However, corals can potentially avoid bleaching peril by associating with thermally tolerant symbionts. Here we provide a tool for understanding symbiosis network stability of Caribbean reef-building corals. We created a network of Caribbean hermatypic corals and their associated Symbiodiniaceae phylotypes. A bleaching model was applied to this network to test for resilience and robustness (R50) to thermal stress. It was also layered with trait data for coral …


Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


Chemosensory Receptors In Berghia Stephanieae: Bioinformatics And Localization, Kelsi L. Watkins Oct 2022

Chemosensory Receptors In Berghia Stephanieae: Bioinformatics And Localization, Kelsi L. Watkins

Masters Theses

Chemosensation is achieved through the binding of chemical signals to chemoreceptor proteins embedded in the membranes of sensory neurons. The molecular identity of these receptors, as well as the downstream processing of chemosensory signals, has been well studied in arthropods and vertebrates. However, very little is known about molluscan chemosensation. The identity of chemoreceptor proteins in the nudibranch mollusc Berghia stephanieae are unknown. Data from other protostome and molluscan studies suggest Berghia may use ionotropic receptors for some forms of chemoreception. This study used a bioinformatics approach to identify potential chemosensory ionotropic receptors in the transcriptome of Berghia. A …


The Sos Response In Escherichia Coli K12: An Exploration Of Mutations In Lexa And Reca Using Fluorescence Microscopy, Steven Van Alstine Oct 2022

The Sos Response In Escherichia Coli K12: An Exploration Of Mutations In Lexa And Reca Using Fluorescence Microscopy, Steven Van Alstine

Doctoral Dissertations

Faithful replication of the genome is paramount for maintaining the fitness of an organism. Therefore, life has evolved inducible mechanisms to be able to repair damaged DNA and maintain evolutionary fitness. The SOS response is a highly conserved DNA damage inducible response that is tightly regulated. Multiple factors contribute to the ability of the cell to perform proper DNA repair and induction of the SOS response including the amount of RecA, mutations in RecA that affect competition for DNA, and other proteins that interact with the RecA filament. The complex relationship between RecA and LexA is the subject of this …


Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler Aug 2022

Identification And Characterization Of Genetic Elements That Regulate A C-Di-Gmp Mediated Multicellular Trait In Pseudomonas Fluorescens, Collin Kessler

Electronic Theses and Dissertations

Microbial communities contain densely packed cells where competition for space and resources are fierce. These communities are generally referred to as biofilms and provide advantages to individual cells against immunological and antimicrobial intervention, dehydration, and predation. High intracellular pools of cyclic diguanylate monophosphate (c-di-GMP) cause cells to aggregate during biofilm formation through the production of diverse extracellular polymers. Genes that encode c-di-GMP catalytic enzymes are commonly mutated during chronic infections where opportunists display enhanced resistance to phagocytosis and antibiotics. Our lab uses an emergent multicellular trait in the model organism Pseudomonas fluorescens Pf0-1 to study the emergence of c-di-GMP mutations …


Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio Aug 2022

The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio

Graduate School of Biomedical Sciences Theses and Dissertations

Ribosomes are responsible for translating every protein in the cell and are essential in all domains of life. Ribosome biosynthesis (RB) takes place in the nucleolus and is an intricate hierarchical process involving over 200 factors, including ribosomal proteins, ribosomal RNA (rRNA), and trans-acting ribosome biogenesis factors (RBFs). Inhibiting RB can disrupt nucleolar integrity, causing ribosomal- and nucleolar-factors to delocalize. This can stabilize the transcription factor p53, which is normally degraded rapidly, ultimately causing cell cycle arrest or apoptosis, through a mechanism termed the nucleolar stress response (NSR). This thesis explores the effects of inhibiting RB post rRNA transcription and …


Identification Of Genomic, Proteomic, And Metabolomic Signatures Associated With Pulmonary Hypertension Syndrome In Broilers, Duaa Almansaf Aug 2022

Identification Of Genomic, Proteomic, And Metabolomic Signatures Associated With Pulmonary Hypertension Syndrome In Broilers, Duaa Almansaf

Graduate Theses and Dissertations

The present dissertation contains a collection of studies that examine the genomic, proteomic, and metabolomic association to pulmonary hypertension or ascites phenotype in fast-growing broilers. Pulmonary hypertension is a multifactorial metabolic disease influenced by physiological, environmental, and nutritional factors. It is characterized by a number of structural changes including, thrombosis and adverse pulmonary vascular remodeling. Thus, the atrial pressure is increased, and the right ventricle becomes hypertrophied, resulting in heart failure and the death of the bird. Pulmonary hypertension or ascites is a global problem that has negatively impacted the economy. The increased mortality rate of broilers (25%) is estimated …


Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman Aug 2022

Characterization Of Genetic Pathways Involved In Resistance To A Novel Antifungal Peptide, Kayla L. Haberman

Graduate Theses and Dissertations

Antibiotic resistance is increasing prevalence, particularly in Candida glabrata. This opportunistic pathogen is closely phylogenetically related to Saccharomyces cerevisiae; however, its characterization is limited. C. glabrata is only second to Candida albicans as a fungal pathogen in immunocompromised patients. Commonly resistant to azoles, the most common fungal therapy, it has become costly and challenging to treat. A histatin 5 derived antifungal peptide, KM29, has a high degree of efficacy in Candida species and S. cerevisiae. The objective of this work is to advance our understanding of the mechanism of action of KM29 against C. glabrata. Previous work in the lab …


Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer Aug 2022

Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer

All Theses

DNA double-strand breaks (DSB) are one of the most serious DNA lesions because improper repair of a DSB can lead to loss of heterozygosity, aneuploidy, and cancer. One of the primary pathways to repair DSBs is homologous recombination (HR). HR resects the DNA around the DSB and then uses homologous DNA as a template to restore the broken sequence. RAD51 has a vital function in this pathway by forming a nucleoprotein filament on a resected end of the DSB. The nucleoprotein filament searches for homology within the homologous DNA. Once homology is located, strand invasion followed by strand exchange occurs. …


Validation Of Whole Genome Resequencing For Mapping The Genetics Of Ascites In Broilers And Viral Susceptibility In Layers, Katherine Pepper Lee Aug 2022

Validation Of Whole Genome Resequencing For Mapping The Genetics Of Ascites In Broilers And Viral Susceptibility In Layers, Katherine Pepper Lee

Graduate Theses and Dissertations

This dissertation focused on the efficacy and validity of whole genome resequencing (WGR) for fine mapping genetic determinants of particular traits in a given organism. Previously, our research group used WGR to identify haplotype blocks of single nucleotide polymorphisms associated with ascites resistance with some as strong candidates for use in marker-assisted selection (MAS). Chapter 2 discusses the completion of a MAS project through evaluation of ascites incidence as well as production traits of economic value to poultry producers. Thus, the MAS project also covered viability of this methodology in the industry. The MAS significantly reduced ascites incidence in broilers …


Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn Jun 2022

Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn

Honors Theses

Human infertility is a complex disorder that can often be attributed to a dysfunction of the endocrine system. Follicle-stimulating hormone (FSH) is one of many hormones that participate in a complex process in both women and men to regulate normal reproduction. The dysfunction of this hormone and its receptor are some of the many causes of infertility. FSH is secreted by the anterior pituitary and, in women, initiates a cascade of biological events that enable ovulation. FSH carries out its function by binding and activating specific receptors. The FSH receptor (FSHR) is a G protein-coupled receptor (GPCR) that is located …


Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip Jun 2022

Cdc6 Is Sequentially Regulated By Pp2a-Cdc55, Cdc14, And Sic1 For Origin Licensing In S. Cerevisiae, Jasmin Philip

Dissertations, Theses, and Capstone Projects

Control of DNA replication is critical for progression of the cell cycle and genomic stability. Cyclin-dependent kinases (CDKs) coordinate numerous phosphorylation events to accomplish two biological tasks for all living organisms: DNA replication and cell division. One CDK, Cyclin-Cdc28, is responsible for cell cycle progression in budding yeast. DNA replication requires a stepwise assembly of the pre-replicative complex on DNA, including Orc1-6, Cdc6, Cdt1 and Mcm2-7, during M-G1 phase. Cdc6 contains eight Cdc28 consensus sites, SP or TP motifs. Clb5-Cdc28 phosphorylates Cdc6-T7 to recruit Cks1, the Cdc28 phospho-adaptor, for subsequent multisite phosphorylation during S phase. There are two phospho-degrons at …


A Review Of Current Methods In Avian Dietary Analysis And Their Integrated Application To Characterize The Trophic Niche Of Louisiana Waterthrush (Parkesia Motacilla)., Brandon Hoenig May 2022

A Review Of Current Methods In Avian Dietary Analysis And Their Integrated Application To Characterize The Trophic Niche Of Louisiana Waterthrush (Parkesia Motacilla)., Brandon Hoenig

Electronic Theses and Dissertations

Characterizing a species’ dietary composition presents an avenue to understand many facets of its ecological niche and can provide essential information for the species’ long-term conservation. To date, the vast majority of diet studies have relied on direct identification of prey during foraging observations or from diet samples to characterize the dietary habits of birds. However, advancements in laboratory-based approaches have revolutionized the field of trophic ecology by allowing researchers to indirectly infer dietary habits with higher resolution across greater time scales. Here, I apply two of these laboratory-based techniques, namely DNA metabarcoding and stable isotope analysis, to characterize the …