Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 117

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova Jan 2024

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira S Makarova, Eugene V Koonin, Satish K Nair, Shunsuke Tagami, Konstantin Severinov, Maria L Sokolova

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of …


Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang Jan 2024

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor …


Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield May 2023

Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield

Honors Scholar Theses

Antibiotic treatment failure is a public health crisis, with a 2019 report stating that roughly 35,000 deaths occur in the United States yearly due to bacterial infections that are unresponsive to antibiotics (1). One complication in the treatment of bacterial infection is antibiotic persistence which further compromises our battle to effectively treat infection. Bacterial persisters can exist in clonal bacterial cultures and can tolerate antibiotic treatment by undergoing reversible phenotypic changes. They can survive drug concentrations that their genetically identical kin cannot. Some persisters remain in a slow growing state and are difficult to target with current antibiotics. A specific …


Analysis Of Ssa4 Reporter Expression By Q-Pcr, Susveen Sharanshi, Rebecca Adams Apr 2023

Analysis Of Ssa4 Reporter Expression By Q-Pcr, Susveen Sharanshi, Rebecca Adams

Belmont University Research Symposium (BURS)

The synthesis of genome-encoded proteins via mRNA translation is integral to cell survival. In eukaryotes, such as S. cerevisiae, the mRNA that is produced in the nucleus must be exported to the cytoplasm for translation to occur, and this process is highly regulated. Specifically, the export of mRNA occurs via travel through nuclear pore complexes (NPCs), which are selective doorways embedded in the nuclear envelope. During cellular stress, such as heat shock, the cell needs to regulate gene expression to permit survival, and mRNA export is one step at which this occurs. At these high temperatures, a cell’s proteins …


Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta Mar 2023

Anterior And Posterior Tongue Regions And Taste Papillae: Distinct Roles And Regulatory Mechanisms With An Emphasis On Hedgehog Signaling And Antagonism., Archana Kumari, Charlotte M. Mistretta

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sensory receptors across the entire tongue are engaged during eating. However, the tongue has distinctive regions with taste (fungiform and circumvallate) and non-taste (filiform) organs that are composed of specialized epithelia, connective tissues, and innervation. The tissue regions and papillae are adapted in form and function for taste and somatosensation associated with eating. It follows that homeostasis and regeneration of distinctive papillae and taste buds with particular functional roles require tailored molecular pathways. Nonetheless, in the chemosensory field, generalizations are often made between mechanisms that regulate anterior tongue fungiform and posterior circumvallate taste papillae, without a clear distinction that highlights …


A Patient-Derived Ipsc Model To Study Glutamate Deficiency By Shank-3 Mutation In Autism Spectrum Disorder, Tiffany Berry, Courtney Caccia Apr 2022

A Patient-Derived Ipsc Model To Study Glutamate Deficiency By Shank-3 Mutation In Autism Spectrum Disorder, Tiffany Berry, Courtney Caccia

Biology Student Scholarship

Tiffany Berry ’22, Majors: Biology and Psychology

Courtney Caccia ’22, Majors: Biology and Psychology

Faculty Mentor: Dr. Charles Toth, Biology

The use of human stem cell lines derived from persons with Autism Spectrum Disorder (ASD) provides a unique opportunity to model brain growth and potential to regain brain activity for treatment. Our lab has previously used stem cells to derive 3D cardiomyocytes to examine cardiovascular disease as well as kidney organoids and macrophages to study kidney disease. Using techniques our lab has learned using these stem cell models have prepared us to examine cell communication in mutated neurons. We will …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Dual Activities Of Acc Synthase: Novel Clues Regarding The Molecular Evolution Of Acs Genes, Chang Xu, Bowei Hao, Gongling Sun, Yuanyuan Mei, Lifang Sun, Yunmei Sun, Yibo Wang, Yongyan Zhang, Wei Zhang, Mengyuan Zhang, Yue Zhang, Dan Wang, Zihe Rao, Xin Li, Jeffery Shen, Ning Ning Wang Nov 2021

Dual Activities Of Acc Synthase: Novel Clues Regarding The Molecular Evolution Of Acs Genes, Chang Xu, Bowei Hao, Gongling Sun, Yuanyuan Mei, Lifang Sun, Yunmei Sun, Yibo Wang, Yongyan Zhang, Wei Zhang, Mengyuan Zhang, Yue Zhang, Dan Wang, Zihe Rao, Xin Li, Jeffery Shen, Ning Ning Wang

Life Sciences Faculty Research

Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for …


Vps54 Regulates Lifespan And Locomotor Behavior In Adult Drosophila Melanogaster, Emily C. Wilkinson, Emily L. Starke, Scott A. Barbee Oct 2021

Vps54 Regulates Lifespan And Locomotor Behavior In Adult Drosophila Melanogaster, Emily C. Wilkinson, Emily L. Starke, Scott A. Barbee

Biological Sciences: Faculty Scholarship

Vps54 is an integral subunit of the Golgi-associated retrograde protein (GARP) complex, which is involved in tethering endosome-derived vesicles to the trans-Golgi network (TGN). A destabilizing missense mutation in Vps54 causes the age-progressive motor neuron (MN) degeneration, muscle weakness, and muscle atrophy observed in the wobbler mouse, an established animal model for human MN disease. It is currently unclear how the disruption of Vps54, and thereby the GARP complex, leads to MN and muscle phenotypes. To develop a new tool to address this question, we have created an analogous model in Drosophila by generating novel loss-of-function alleles of the …


Determining The Primary Dna Substrates Of Shld2'S Ob-Fold Domains, Hari Patchigolla Oct 2021

Determining The Primary Dna Substrates Of Shld2'S Ob-Fold Domains, Hari Patchigolla

Holster Scholar Projects

Failure to repair DNA double-stranded breaks leads to cell death. Radiation therapy is commonly used to kill cancer cells by inducing these breaks. However resistance to radiation therapy, due to a hyperactive DNA double-stranded break repair pathway, is a common occurrence that makes cancer patients more prone to relapse. The Shieldin complex is shown to promote DNA-double stranded break repair by binding to DNA at sites of damage. Thus, the objective of this project is to understand the affinity and type of DNA that Shieldin binds to, through gel-shift assays, for the eventual creation of an inhibitor for this protein …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Synphilin-1 And Its Effects On Pathogenesis Of Parkinson’S Disease, Mirghani Mohamed Jun 2021

Synphilin-1 And Its Effects On Pathogenesis Of Parkinson’S Disease, Mirghani Mohamed

Honors Scholar Theses

Parkinson's Disease (PD) is a progressive neurodegenerative and movement disorder primarily caused by the degradation of dopaminergic neurons. Known markers of neurodegeneration in PD are Lewy Bodies, which are fibrillar aggregates that are found in the brains of PD patients. Lewy Bodies can accumulate from specific mutations in the SNCA gene that codes for alpha-synuclein, a protein enriched in presynaptic neurons. A mutated SNCA gene can cause conformational aggregates of alpha-synuclein to form toxic species mediating neuronal death. Research into alpha-synuclein has led to the discovery of a binding partner known as synphilin-1 that is also found in protein aggregates …


New Emerging Roles Of The Novel Hepatokine Serpinb1 In Type 2 Diabetes Mellitus: Crosstalk With B-Cell Dysfunction And Dyslipidemia, Mohamed M. Kamal, Aya A. Ali, Ghada H. Sayed, Shadia Ragab, Dina H. Kassem May 2021

New Emerging Roles Of The Novel Hepatokine Serpinb1 In Type 2 Diabetes Mellitus: Crosstalk With B-Cell Dysfunction And Dyslipidemia, Mohamed M. Kamal, Aya A. Ali, Ghada H. Sayed, Shadia Ragab, Dina H. Kassem

Pharmacy

Diabetes mellitus (DM) is a devastating metabolic disease. Recently, the cross-talk between insulin-secreting-β-cells and various organs has sparked much interest. SerpinB1 emerged as a novel hepatokine inducing β-cell proliferation. However, its role in type-2-DM (T2DM) patients has not been adequately studied. This study was designed to investigate its circulating levels in subjects with/without T2DM, and to study its association with β-cell function, as well as various glycemic-control and lipid-profile parameters. Anthropometric data and biochemical markers including fasting plasma glucose (FPG), HbA1C % and lipid profile parameters were measured in 55 T2DM patients, as well as 30 healthy nondiabetic subjects. Serum …


The Analysis Of Folate-Dependent Transcription Factor Zinc Finger Protein 410, Feifan Xu Apr 2021

The Analysis Of Folate-Dependent Transcription Factor Zinc Finger Protein 410, Feifan Xu

Senior Honors Theses

A previous study that introduced dietary folate to mice in the form of folic acid to determine if gene activity would be altered based on this biological molecule demonstrated that mice without folic acid had cognition deficits, and this phenomenon was correlated with altered gene expression in their brains. The included bioinformatic analysis revealed two main transcription factors that bind to proteins in the nucleus, and one is known as the Zinc Finger Protein 410 (Zfp410). Due to the lack of literature explaining the function of this transcription factor, this project is intended to analyze Zfp410 in detail from scratch. …


Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …


A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal Jul 2020

A Novel Serpinb1 Single-Nucleotide Polymorphism Associated With Glycemic Control And Β-Cell Function In Egyptian Type 2 Diabetic Patients, Dina H. Kassem, Aya Adel, Ghada H. Sayed, Mohamed M. Kamal

Pharmacy

Aims: Serine protease inhibitor B1 (SerpinB1) is a neutrophil elastase inhibitor that has been proved to be associated with type 2 diabetes mellitus and pancreatic β-cell proliferation. In this study, we investigated 2 SERPINB1 SNPs, rs114597282 and rs15286, regarding their association with diabetes risk and various anthropometric and biochemical parameters in Egyptian type 2 diabetic patients.

Materials and Methods: A total of 160 subjects (62 control and 98 type 2 diabetic patients) participated in this study. Various anthropometric and biochemical parameters were assessed. Genotyping assay for the two SNPs was done using TaqMan genotyping assays. The association of rs15286 variants …


Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott Jan 2020

Identification Of Uncommon Antibiotic-Producing Illinois Soil Isolates, Lesly Muniz, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on student sourcing antibiotic discovery from the soil. We researched tester strains B. subtilis and E. coli from the soil isolates obtained. We further verified if the isolates were common antibiotic bacteria. Unfortunately, this project heavily relied on biochemical tests, colony morphology, and Gram stains to reject or fail to reject our hypothesis. Our goal was to discover new antibiotic-producing bacteria that could be beneficial in combating ESKAPE strains. A proper PCR and DNA extraction would be required …


Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott Jan 2020

Pseudomonas And Bacillus Soil Isolates Produce Antibiotics, Chelsea Brandt, Dr. Lori Scott

Identifying and Characterizing Novel Antibiotic Producing Microbes From the Soil

The recent emergence of antibiotic resistance bacterial strains presents a significant challenge and threat to human healthcare. While new methods of treatment such as bacteriophage therapy and combinations of existing antibiotics are being researched, the human population is in dire need of new antibiotics to replace those that are ineffective. This research addresses this need by identifying antibiotic producing bacteria in a soil sample from Davenport, IA. This project is a collaboration with the Tiny Earth Project Initiative (TEPI), which is a global network of educators and students focused on studentsourcing antibiotic discovery from soil. Microbiology lab techniques and 16S …


A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg Jan 2020

A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg

Publications and Research

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse …


Nitric Oxide Is Involved In Heavy Ion-Induced Non-Targeted Effects In Human Fibroblasts, Megumi Hada, Premkumar B. Saganti, Francis A. Cucinotta Sep 2019

Nitric Oxide Is Involved In Heavy Ion-Induced Non-Targeted Effects In Human Fibroblasts, Megumi Hada, Premkumar B. Saganti, Francis A. Cucinotta

Health Physics & Diagnostic Sciences Faculty Publications

Previously, we investigated the dose response for chromosomal aberration (CA) for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) particles, and showed that the dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Our results suggested that the simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. Nitric oxide (NO) has been reported as a candidate for intercellular signaling for NTE in many studies. In order to estimate the …


Computational Analysis Of Large-Scale Trends And Dynamics In Eukaryotic Protein Family Evolution, Joseph Boehm Ahrens Mar 2019

Computational Analysis Of Large-Scale Trends And Dynamics In Eukaryotic Protein Family Evolution, Joseph Boehm Ahrens

FIU Electronic Theses and Dissertations

The myriad protein-coding genes found in present-day eukaryotes arose from a combination of speciation and gene duplication events, spanning more than one billion years of evolution. Notably, as these proteins evolved, the individual residues at each site in their amino acid sequences were replaced at markedly different rates. The relationship between protein structure, protein function, and site-specific rates of amino acid replacement is a topic of ongoing research. Additionally, there is much interest in the different evolutionary constraints imposed on sequences related by speciation (orthologs) versus sequences related by gene duplication (paralogs). A principal aim of this dissertation is to …


Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes which provide insight into the disease's process. With rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of tens of thousands of genes and proteins resulting in enormous data sets where the number of genomic features is far greater than the number of subjects. Methods based on univariate Cox regression are often used to select genomic features related to survival outcome; however, the Cox model assumes proportional hazards …


Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

The past two decades have witnessed significant advances in high-throughput ``omics" technologies such as genomics, proteomics, metabolomics, transcriptomics and radiomics. These technologies have enabled simultaneous measurement of the expression levels of tens of thousands of features from individual patient samples and have generated enormous amounts of data that require analysis and interpretation. One specific area of interest has been in studying the relationship between these features and patient outcomes, such as overall and recurrence-free survival, with the goal of developing a predictive ``omics" profile. Large-scale studies often suffer from the presence of a large fraction of censored observations and potential …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper Jun 2018

Snf1 Cooperates With The Cwi Mapk Pathway To Mediate The Degradation Of Med13 Following Oxidative Stress, Stephen D Willis, David C Stieg, Kai Li Ong, Ravina Shah, Alexandra K. Strich, Julianne H Grose, Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Eukaryotic cells, when faced with unfavorable environmental conditions, mount either pro-survival or pro-death programs. The conserved cyclin C-Cdk8 kinase plays a key role in this decision. Both are members of the Cdk8 kinase module that, along with Med12 and Med13, associate with the core Mediator complex of RNA polymerase II. In Saccharomyces cerevisiae, oxidative stress triggers Med13 destruction, which releases cyclin C into the cytoplasm to promote mitochondrial fission and programmed cell death. The SCFGrr1 ubiquitin ligase mediates Med13 degradation dependent on the cell wall integrity pathway, MAPK Slt2. Here we show that the AMP kinase Snf1 activates a second …


Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves Jun 2018

Acetic Acid Induces Sch9p-Dependent Translocation Of Isc1p From The Endoplasmic Reticulum Into Mitochondria, António Rego, Katrina F Cooper, Justin Snider, Yusuf A Hannun, Vítor Costa, Manuela Côrte-Real, Susana R Chaves

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 …


Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper May 2018

Till Death Do Us Part: The Marriage Of Autophagy And Apoptosis., Katrina F Cooper

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Autophagy is a widely conserved catabolic process that is necessary for maintaining cellular homeostasis under normal physiological conditions and driving the cell to switch back to this status quo under times of starvation, hypoxia, and oxidative stress. The potential similarities and differences between basal autophagy and stimulus-induced autophagy are still largely unknown. Both act by clearing aberrant or unnecessary cytoplasmic material, such as misfolded proteins, supernumerary and defective organelles. The relationship between reactive oxygen species (ROS) and autophagy is complex. Cellular ROS is predominantly derived from mitochondria. Autophagy is triggered by this event, and by clearing the defective organelles effectively, …


Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott May 2018

Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of Escherichia coli and Meiothermus ruber proC genes using the complementation assay. In this research project, mutants of varying severity to the functional state of the protein were developed. The results showed that two or more amino acid deletions reduced or eliminated ProC function. Amino acid substitutions, on the other hand, were not severe enough to impact ProC function. Double and triple mutants …


Copy Number Variation In The Porcine Genome Detected From Whole-Genome Sequence, Rebecca Anderson Mar 2018

Copy Number Variation In The Porcine Genome Detected From Whole-Genome Sequence, Rebecca Anderson

Honors Theses

Copy number variations (CNVs) are large insertions, deletions, and duplications in the genome that vary between individuals in a species. These variations are known to impact a broad range of phenotypes from molecular-level traits to higher-order clinical phenotypes. CNVs have been linked to complex traits in humans such as autism, attention deficit hyperactivity disorder, nervous system disorders, and early-onset extreme obesity. In this study, whole-genome sequence was obtained from 72 founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC) in Clay Center, Nebraska. This included 24 boars (12 Duroc and 12 Landrace) and …


Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott Jan 2018

Examination Of Orthologous Genes (Mrub_2518 And B3728, Mrub_2519 And B3727, Mrub_2520 And B3726, Mrub_2521 And B3725) Responsible For Abc Phosphate Transporters In Two Species M. Ruber And E. Coli, Margaret Meyer, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

In this project we investigated the biological function of the genes b3725, b3726, b3727, b3728 and Mrub_2518, Mrub_2519, Mrub_2520 and Mrub_2521 (KEGG map number 02010). We predict that these genes encode the components of a Phosphate ABC transporter: Orthologous genes Mrub_2518 (DNA coordinates 2565359..2566438) and b3728 encodes the periplasmic phosphate binding component; Orthologous genes Mrub_2519 (DNA coordinates 2566499..2567485) and b3727, and Mrub_2520 (DNA coordinates 2567496..2568326) and b3726 encode for the two transmembrane proteins; Orthologous genes Mrub_2521 (DNA coordinates 2568338..2569159) and b3725 encode for the ATP binding protein within the cytoplasm. Within the two species, M. ruber and E. coli, …