Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley Apr 2023

Med13 Degradation Defines A New Receptor-Mediated Autophagy Pathway Activated By Nutrient Deprivation, Sara E. Hanley

Graduate School of Biomedical Sciences Theses and Dissertations

Cells are exposed to an enormous amount of diverse extracellular cues but have a limited arsenal of weapons for protecting and maintaining homeostasis. To overcome these restrictions, nature has engineered proteins that have multiple functions. The pleiotropy of using one protein to carry out a variety of functions allows cells to rapidly execute tailored responses to a diverse set of signals. The Cdk8 kinase module (CKM) is a conserved detachable unit of the Mediator complex predominantly known for its role in transcriptional regulation. The CKM is composed of four proteins, the scaffolding proteins Med13 and Med12, as well as the …


Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle Apr 2023

Modeling The Tripartite Role Of Cyclin C In Cellular Stress Response Coordination, Steven J. Doyle

Graduate School of Biomedical Sciences Theses and Dissertations

For normal cellular function, exogenous signals must be interpreted and careful coordination must take place to ensure desired fates are achieved. Mitochondria are key regulatory nodes of cellular fate, undergoing fission/fusion cycles depending on the needs of the cell, and help mediate cell death fates. The CKM or Cdk8 kinase module, is composed of cyclin C (CC), Cdk8, Med12/12L, and Med13/13L. The CKM controls RNA polymerase II, acting as a regulator of stress-response and growth-control genes. Following stress, CC translocates to the mitochondria and interacts with both fission and iRCD apoptotic mediators. We hypothesize that CC represents a key mediator, …


Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio Aug 2022

The Effects Of Stress On The Mammalian Nucleolus And Ribosome Synthesis, Russell T. Sapio

Graduate School of Biomedical Sciences Theses and Dissertations

Ribosomes are responsible for translating every protein in the cell and are essential in all domains of life. Ribosome biosynthesis (RB) takes place in the nucleolus and is an intricate hierarchical process involving over 200 factors, including ribosomal proteins, ribosomal RNA (rRNA), and trans-acting ribosome biogenesis factors (RBFs). Inhibiting RB can disrupt nucleolar integrity, causing ribosomal- and nucleolar-factors to delocalize. This can stabilize the transcription factor p53, which is normally degraded rapidly, ultimately causing cell cycle arrest or apoptosis, through a mechanism termed the nucleolar stress response (NSR). This thesis explores the effects of inhibiting RB post rRNA transcription and …


Effects Of Trans-Acting Factors On The Translational Machinery In Yeast, Brandon M. Trainor Aug 2021

Effects Of Trans-Acting Factors On The Translational Machinery In Yeast, Brandon M. Trainor

Graduate School of Biomedical Sciences Theses and Dissertations

Synthesis of proteins, or translation, is a complex biological process requiring the coordinated effort of numerous protein and RNA factors. Central to translation is the ribosome, a complex macromolecular complex consisting of both ribosomal RNA (rRNA) and ribosomal protein (r-protein). Ribosomes are essential and are one of the oldest and most abundant biomolecules across all forms of life. In addition to the ribosome, translation requires messenger RNA (mRNA), transfer-RNA conjugated to an amino acid (aa-tRNA), translation factors, and energy in the form of ATP and GTP. Translation universally occurs in four major stages, initiation, elongation, termination, and recycling, with initiation …


A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski Apr 2021

A High-Throughput Approach To Characterizing Arv1 On The Regulation Of Lipid Homeostasis Uncovers A Novel Interaction With Epidermal Growth Factor Receptor, Nicholas Anthony Wachowski

Graduate School of Biomedical Sciences Theses and Dissertations

Acyl-CoA cholesterol acyl transferase related enzyme-2 required for viability 1 (ARV1) was first recognized in Saccharomyces cerevisiae in a study done in 2000 by Tinkelenberg et al. In yeast, the deletion of ARV1 results in numerous defects including abnormal sterol trafficking [1], the reduction of sphingolipid metabolism [2], synthesis of glycosylphosphatidylinositol (GPI) anchor [3], ER stress [4], and hypersensitivity of fatty acids leading to lipoapoptosis [5]. Arv1 germline deletion in mice displayed a lean phenotype with increased energy [6]. In humans, ARV1 mutations lead to epileptic encephalopathy [7].

Non-alcoholic fatty liver disease (NAFLD) consists of simple steatosis to non-alcoholic steatohepatitis …


Characterization Of Human Dutpase, Shawna Marie Rotoli Jul 2019

Characterization Of Human Dutpase, Shawna Marie Rotoli

Graduate School of Biomedical Sciences Theses and Dissertations

Deoxyuridine nucleotidyl transferase (dUTPase) is an enzyme found in all organisms that have thymine as a component of DNA. It catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate thus precluding the buildup of dUTP pools as well as providing the substrate, dUMP, for the de novo synthesis of thymidylate. In Homo sapiens, there are four isoforms: mitochondrial (mDut), nuclear (nDut), variant 3 and variant 4. This work is largely focused on nDut. Using structural and MS analyses of recombinant dUTPase constructs, an intermolecular disulfide bridge between cysteine-3 of each nDut monomer was discovered. It was found that these two …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin Aug 2018

Inhibition Of Ribosome Biogenesis Through Genetic And Chemical Approaches, Leonid Anikin

Graduate School of Biomedical Sciences Theses and Dissertations

In order to maintain the ability to generate proteins, proliferating cells must continuously generate ribosomes, designating up to 80% of their energy to ribosome biogenesis (RBG). RBG involves transcription of rDNA by RNA polymerases I (Pol I) and III (Pol III), expression of approximately 80 ribosomal proteins, and assembly of these components in a process referred to as ribosome maturation. During maturation, the Pol I transcribed 47S pre-rRNA undergoes a number of processing events, while simultaneously interacting with processing factors and ribosomal proteins that drive pre-ribosome assembly. Inhibition of RBG has become one of the pursued targets for cancer therapy …


Insight Into Translational Activation In Yeast Mitochondria, Julia Lynn Jones Aug 2018

Insight Into Translational Activation In Yeast Mitochondria, Julia Lynn Jones

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial function depends on over a thousand proteins, of which the majority are nuclear DNA-encoded and approximately one percent are mitochondrial DNA-encoded. The mitochondrial DNA of Saccharomyces cerevisiae contains eight protein-encoding genes, seven of which are required for proper function of the respiratory complexes and one encodes a ribosomal protein. The bigenomic nature of the oxidative phosphorylation complexes requires coordinated expression and regulation from both the nuclear and the mitochondrial genomes. It is currently unclear how this regulatory network operates. However, it is thought that nuclear genome-encoded messengers localized to the mitochondria aid in this coordination.

A family of proteins …


Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang Aug 2017

Chaperoning Ef Hands That Shape Calcium Response: Ncald, Hpca And S100b, Jingyi Zhang

Graduate School of Biomedical Sciences Theses and Dissertations

All organisms have an internal clock with a defined period between repetitions of activities. The period for circadian clock in human is 24.5 hours, while in mouse and rat, it is 23.5 hours. However, all organisms are forced to be in synchronization with their environment. A major environmental force that resets the internal clock to 24 hours is light. This phenomenon is defined as “light entrainment” or “phase-setting”. It is unclear how this entrainment process occurs. Studies from this laboratory indicate a role for two neuronal calcium sensor proteins: Neurocalcin  (NCALD) and S100B. For these two genes, mRNA as …


Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz Aug 2017

Molecular Mechanisms Of Dna Replication Initiation In Hpvs With Genetic Variations Leading To Cellular Carcinogenesis, Gulden Yilmaz

Graduate School of Biomedical Sciences Theses and Dissertations

Human papillomaviruses are a vast family of double-stranded DNA viruses containing non-carcinogenic and carcinogenic types, whose crucial differences remain unknown, except for the difference in the frequency of DNA replication. The human papillomavirus (HPV) E2 protein regulates the initiation of viral DNA replication and transcription. Its recognition and binding to four 12 bp palindromic sequences in the viral origin is essential for its function. Little is known about the DNA binding mechanism of the E2 protein found in HPV types that have low risk for oncogenicity (low-risk) as well as the roles of various elements of the individual binding sites. …


Characterization Of E-Cadherin Regulation In Response To Zeb1 Inhibition In Endometrial Cancer Cell Lines, Chidozie Paul Chukwu May 2017

Characterization Of E-Cadherin Regulation In Response To Zeb1 Inhibition In Endometrial Cancer Cell Lines, Chidozie Paul Chukwu

Graduate School of Biomedical Sciences Theses and Dissertations

Epithelial to mesenchymal transition (EMT) is the process in which cells lose their epithelial structure during gastrulation. This process also affects the migration and movement of tumor cells and promotes invasion and metastases of endometrial carcinomas. Down-regulation of E-cadherin (CDH1) by transcription factors is the key target of EMT modulators and is achieved mainly by ZEB1 (zinc finger E-box binding homeobox 1). Current research looking at restoration of E-cadherin expression in vitro involves the use of small molecules such as histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors. Trichostatin A (TSA) and small interfering ribonucleic acid (siRNA) are tools that …


The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner May 2017

The Role Of The Expansion Segment 7 Of 25s Rrna During Oxidative Stress In Saccharomyces Cerevisiae, Ethan Gardner

Graduate School of Biomedical Sciences Theses and Dissertations

Translation is an essential process for protein expression in both eukaryotes and prokaryotes. Like any cellular process, translational factors are prone to damage when the cell is under stress. One common stressor that nearly all cells may experience is abnormal levels of reactive oxygen species (ROS). Damage caused by ROS has been associated with disease ranging from neurodegenerative impairments, to the aging process of cells. These oxygen radicals are capable of damaging a litany of molecules including nucleic acids, and molecular factors involved in translation. It has been shown that tRNA can be cleaved upon ROS-induced stress and these fragments …


Punctuated Evolution Within A Eurythermic Genus (Mesenchytraeus) Of Segmented Worms: Genetic Modification Of The Glacier Ice Worm F1f0 Atp Synthase, Shirley A. Lang Dec 2016

Punctuated Evolution Within A Eurythermic Genus (Mesenchytraeus) Of Segmented Worms: Genetic Modification Of The Glacier Ice Worm F1f0 Atp Synthase, Shirley A. Lang

Graduate School of Biomedical Sciences Theses and Dissertations

Segmented worms (Annelida) are among the most successful animal inhabitants of extreme environments worldwide. An unusual group of Mesenchytraeus worms endemic to the Pacific Northwest of North America occupy geographically proximal ecozones ranging from low elevation temperate rainforests to high altitude glaciers. Along this altitudinal transect, Mesenchytraeus representatives from disparate habitat types were collected and subjected to deep mitochondrial and nuclear phylogenetic analyses. Evidence presented here employing modern bioinformatic analyses (i.e., maximum likelihood, Bayesian inference, multi-species coalescent) supports a Mesenchytraeus “explosion” in the upper Miocene (5-10 million years ago) that gave rise to ice, snow and terrestrial worms, derived from …


Structural And Functional Interactions Between Bro1 Domain Of Human Alix Protein And Nucleocapsid Packaging Rna Complex From Hiv, Scott Gross May 2015

Structural And Functional Interactions Between Bro1 Domain Of Human Alix Protein And Nucleocapsid Packaging Rna Complex From Hiv, Scott Gross

Graduate School of Biomedical Sciences Theses and Dissertations

A virus is only as powerful as its ability to spread. Enveloped retroviruses, namely HIV-1, use exocytosis pathways that normal host cells use to release particles from the plasma membrane. The main pathways of interest in this study are the Endosomal Sorting Complex Required for Transport (ESCRT) and adjacent ALIX pathways. The ESCRT pathway is especially important for degradation of receptor/cargo complexes that form Multi-Vesicular Bodies (MVBs). Currently, there is no known therapy that targets this endosomal pathway, which would prevent the spread of the virus to other cells. The virus has adapted to jump from pathway to pathway when …


Med13p Prevents Stress-Independent Mitochondrial Hyperfragmentation And Aberrant Apoptosis Activation In Saccharomyces Cerevisiae By Controlling Cyclin C Nuclear Localization, Svetlana Khakhina Aug 2013

Med13p Prevents Stress-Independent Mitochondrial Hyperfragmentation And Aberrant Apoptosis Activation In Saccharomyces Cerevisiae By Controlling Cyclin C Nuclear Localization, Svetlana Khakhina

Graduate School of Biomedical Sciences Theses and Dissertations

During aging, and as a result of environmental changes, cells are exposed to elevated levels of reactive oxygen species (ROS). High ROS levels induce lipid oxidation, protein aggregation, mitochondrial hyperfragmentation, DNA damage and programmed cell death (PCD), also called apoptosis. PCD is a highly regulated process and its misregulation has been linked to neurodegenerative diseases and cancer development.

Our hypothesis is that cyclin C plays a role in the initiation of apoptosis. During normal conditions, cyclin C represses the transcription of stress response genes (SRG). In response to stress, cyclin C translocates to the cytoplasm where it facilitates mitochondrial hyperfragmentation …