Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Performing A Genetic Screen To Identify Factors That Promote Lncrna-Dependent Gene Repression, Chrishan Fernando, Cecilia Yiu, Sara Cloutier, Siwen Wang, Elizabeth Tran Aug 2017

Performing A Genetic Screen To Identify Factors That Promote Lncrna-Dependent Gene Repression, Chrishan Fernando, Cecilia Yiu, Sara Cloutier, Siwen Wang, Elizabeth Tran

The Summer Undergraduate Research Fellowship (SURF) Symposium

Long non-coding RNAs (lncRNAs) were once thought not to have useful functions in organisms but rather to be products of aberrant transcription. However, roles are being found for lncRNAs in beneficial processes such as controlling gene expression. In some of these cases, lncRNAs form R-loops in vivo. R-loops are nucleic acid structures consisting of hybridized strands of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) as well as the displaced strand of ssDNA. Formation of these R-loops is important for gene regulation by the lncRNAs. However, factors that promote formation of lncRNA R-loops are not known. The gene PHO84 is being …


Tumor Formation In Response To Loss Of Chromatin Remodeler Chd5 In Zebrafish, Taylor R. Sabato, Erin L. Sorlien, Dr. Joseph P. Ogas Aug 2017

Tumor Formation In Response To Loss Of Chromatin Remodeler Chd5 In Zebrafish, Taylor R. Sabato, Erin L. Sorlien, Dr. Joseph P. Ogas

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chromodomain helicase DNA binding protein 5 (CHD5) has been identified as a tumor suppressor in humans. Deletion or mutation of CHD5 has been observed in numerous cancers, including neuroblastoma and melanoma. We hypothesize that chd5 is also a tumor suppressor in zebrafish, a powerful model system to study tumorigenesis. Many genes involved in tumorigenesis are conserved in zebrafish, and they develop fully penetrant tumor phenotypes. We have created chd5 knock-out zebrafish using CRISPR/Cas9 and are monitoring them for tumor development. In addition to the chd5 knock-outs, we are undertaking a double-mutant approach by coupling loss …


A Screen To Identify Saga-Activated Genes That Are Required For Proper Photoreceptor Axon Targeting In Drosophila Melanogaster, Kaelan J. Brennan, Vikki M. Weake, Jingqun Q. Ma Aug 2015

A Screen To Identify Saga-Activated Genes That Are Required For Proper Photoreceptor Axon Targeting In Drosophila Melanogaster, Kaelan J. Brennan, Vikki M. Weake, Jingqun Q. Ma

The Summer Undergraduate Research Fellowship (SURF) Symposium

The inherited human genetic disease spinocerebellar ataxia type 7 (SCA7) is characterized by progressive neurodegeneration and visual impairment that ultimately leads to blindness. SCA7 results from a mutation in the human ATXN7 gene that causes an expansion of polyglutamine tracts in this gene’s corresponding protein. Human ATXN7 protein serves as a component of the deubiquitylase (DUB) module of the large, multi-subunit complex Spt-Ada-Gcn acetyltransferase, or SAGA. SAGA is a transcriptional coactivator and histone modifier that functions to deubiquitylate histone H2B and allow for transcription of SAGA-mediated genes to occur. In Drosophila, mutations in SAGA DUB’s Nonstop and sgf11 components …